Functional brain network identification and fMRI augmentation using a VAE-GAN framework

计算机科学 过度拟合 鉴别器 人工智能 功能磁共振成像 模式识别(心理学) 静息状态功能磁共振成像 生成模型 机器学习 人工神经网络 生成语法 神经科学 心理学 电信 探测器
作者
Ning Qiang,Jie Gao,Qinglin Dong,Huiji Yue,Hongtao Liang,Lili Liu,Jingjing Yu,Jing Hu,Shu Zhang,Bao Ge,Yifei Sun,Zhengliang Liu,Tianming Liu,Jin Li,Hujie Song,Shijie Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107395-107395 被引量:14
标识
DOI:10.1016/j.compbiomed.2023.107395
摘要

Recently, deep learning models have achieved superior performance for mapping functional brain networks from functional magnetic resonance imaging (fMRI) data compared with traditional methods. However, due to the lack of sufficient data and the high dimensionality of brain volume, deep learning models of fMRI tend to suffer from overfitting. In addition, existing methods rarely studied fMRI data augmentation and its application. To address these issues, we developed a VAE-GAN framework that combined a VAE (variational auto-encoder) with a GAN (generative adversarial net) for functional brain network identification and fMRI augmentation. As a generative model, the VAE-GAN models the distribution of fMRI so that it enables the extraction of more generalized features, and thus relieve the overfitting issue. The VAE-GAN is easier to train on fMRI than a standard GAN since it uses latent variables from VAE to generate fake data rather than relying on random noise that is used in a GAN, and it can generate higher quality of fake data than VAE since the discriminator can promote the training of the generator. In other words, the VAE-GAN inherits the advantages of VAE and GAN and avoids their limitations in modeling of fMRI data. Extensive experiments on task fMRI datasets from HCP have proved the effectiveness and superiority of the proposed VAE-GAN framework for identifying both temporal features and functional brain networks compared with existing models, and the quality of fake data is higher than those from VAE and GAN. The results on resting state fMRI of Attention Deficit Hyperactivity Disorder (ADHD)-200 dataset further demonstrated that the fake data generated by the VAE-GAN can help improve the performance of brain network modeling and ADHD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John发布了新的文献求助10
刚刚
刚刚
yh发布了新的文献求助10
1秒前
1秒前
2秒前
田様应助张wx_100采纳,获得50
2秒前
满天星完成签到 ,获得积分10
2秒前
2秒前
quhayley应助无望采纳,获得10
3秒前
carat完成签到,获得积分10
4秒前
长林发布了新的文献求助10
5秒前
蒹葭苍苍发布了新的文献求助10
5秒前
酷炫的之柔完成签到,获得积分10
5秒前
乐乐应助de采纳,获得10
6秒前
从容的从寒完成签到,获得积分10
7秒前
NexusExplorer应助奋斗蜗牛采纳,获得10
7秒前
荷欢笙发布了新的文献求助10
7秒前
8秒前
8秒前
DQ发布了新的文献求助10
8秒前
完美世界应助sweat采纳,获得10
8秒前
完美世界应助sganthem采纳,获得10
9秒前
共享精神应助十厘米你就采纳,获得10
9秒前
maodou发布了新的文献求助10
10秒前
满天星关注了科研通微信公众号
10秒前
Smiling应助xiaolong0325ly采纳,获得10
10秒前
10秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
遇上就这样吧应助橘子采纳,获得20
13秒前
14秒前
奥利给完成签到,获得积分10
14秒前
CipherSage应助汤飞柏采纳,获得10
14秒前
Lucas应助从容的从寒采纳,获得10
16秒前
16秒前
16秒前
17秒前
17秒前
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113