已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Functional brain network identification and fMRI augmentation using a VAE-GAN framework

计算机科学 过度拟合 鉴别器 人工智能 功能磁共振成像 模式识别(心理学) 静息状态功能磁共振成像 生成模型 机器学习 人工神经网络 生成语法 神经科学 心理学 电信 探测器
作者
Ning Qiang,Jie Gao,Qinglin Dong,Huiji Yue,Hongtao Liang,Lili Liu,Jingjing Yu,Jing Hu,Shu Zhang,Bao Ge,Yifei Sun,Zhengliang Liu,Tianming Liu,Jin Li,Hujie Song,Shijie Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107395-107395 被引量:19
标识
DOI:10.1016/j.compbiomed.2023.107395
摘要

Recently, deep learning models have achieved superior performance for mapping functional brain networks from functional magnetic resonance imaging (fMRI) data compared with traditional methods. However, due to the lack of sufficient data and the high dimensionality of brain volume, deep learning models of fMRI tend to suffer from overfitting. In addition, existing methods rarely studied fMRI data augmentation and its application. To address these issues, we developed a VAE-GAN framework that combined a VAE (variational auto-encoder) with a GAN (generative adversarial net) for functional brain network identification and fMRI augmentation. As a generative model, the VAE-GAN models the distribution of fMRI so that it enables the extraction of more generalized features, and thus relieve the overfitting issue. The VAE-GAN is easier to train on fMRI than a standard GAN since it uses latent variables from VAE to generate fake data rather than relying on random noise that is used in a GAN, and it can generate higher quality of fake data than VAE since the discriminator can promote the training of the generator. In other words, the VAE-GAN inherits the advantages of VAE and GAN and avoids their limitations in modeling of fMRI data. Extensive experiments on task fMRI datasets from HCP have proved the effectiveness and superiority of the proposed VAE-GAN framework for identifying both temporal features and functional brain networks compared with existing models, and the quality of fake data is higher than those from VAE and GAN. The results on resting state fMRI of Attention Deficit Hyperactivity Disorder (ADHD)-200 dataset further demonstrated that the fake data generated by the VAE-GAN can help improve the performance of brain network modeling and ADHD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助默默的采纳,获得10
1秒前
Ryan完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
沉默发布了新的文献求助10
5秒前
天天快乐应助开放的千青采纳,获得10
5秒前
ivar完成签到,获得积分10
7秒前
8秒前
佳期发布了新的文献求助10
8秒前
所所应助byto采纳,获得10
8秒前
彭于晏应助tjnusq采纳,获得10
10秒前
阿正嗖啪完成签到,获得积分10
11秒前
11秒前
王贵发发布了新的文献求助10
13秒前
半青一江完成签到 ,获得积分10
17秒前
李健应助卡卡西采纳,获得50
17秒前
请问你认识wkk吗完成签到,获得积分10
18秒前
赘婿应助酷酷的大米采纳,获得30
18秒前
开心点完成签到 ,获得积分10
18秒前
18秒前
情怀应助充盈缺损采纳,获得10
22秒前
南川石发布了新的文献求助50
22秒前
23秒前
matinal发布了新的文献求助10
23秒前
Owen应助Bai采纳,获得10
28秒前
hao发布了新的文献求助10
28秒前
万能图书馆应助钙钛矿狗采纳,获得10
29秒前
刘刘完成签到 ,获得积分10
34秒前
35秒前
陈chen发布了新的文献求助10
35秒前
想毕业的猫猫完成签到,获得积分10
36秒前
yyds应助hao采纳,获得50
37秒前
wanci应助我又可以了采纳,获得30
38秒前
orixero应助XLT采纳,获得10
39秒前
拼搏映菡发布了新的文献求助10
41秒前
41秒前
44秒前
cyt9999发布了新的文献求助10
44秒前
hehe发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627439
求助须知:如何正确求助?哪些是违规求助? 4713759
关于积分的说明 14962257
捐赠科研通 4784702
什么是DOI,文献DOI怎么找? 2554869
邀请新用户注册赠送积分活动 1516352
关于科研通互助平台的介绍 1476696