亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Functional brain network identification and fMRI augmentation using a VAE-GAN framework

计算机科学 过度拟合 鉴别器 人工智能 功能磁共振成像 模式识别(心理学) 静息状态功能磁共振成像 生成模型 机器学习 人工神经网络 生成语法 神经科学 心理学 电信 探测器
作者
Ning Qiang,Jie Gao,Qinglin Dong,Huiji Yue,Hongtao Liang,Lili Liu,Jingjing Yu,Jing Hu,Shu Zhang,Bao Ge,Yifei Sun,Zhengliang Liu,Tianming Liu,Jin Li,Hujie Song,Shijie Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107395-107395 被引量:19
标识
DOI:10.1016/j.compbiomed.2023.107395
摘要

Recently, deep learning models have achieved superior performance for mapping functional brain networks from functional magnetic resonance imaging (fMRI) data compared with traditional methods. However, due to the lack of sufficient data and the high dimensionality of brain volume, deep learning models of fMRI tend to suffer from overfitting. In addition, existing methods rarely studied fMRI data augmentation and its application. To address these issues, we developed a VAE-GAN framework that combined a VAE (variational auto-encoder) with a GAN (generative adversarial net) for functional brain network identification and fMRI augmentation. As a generative model, the VAE-GAN models the distribution of fMRI so that it enables the extraction of more generalized features, and thus relieve the overfitting issue. The VAE-GAN is easier to train on fMRI than a standard GAN since it uses latent variables from VAE to generate fake data rather than relying on random noise that is used in a GAN, and it can generate higher quality of fake data than VAE since the discriminator can promote the training of the generator. In other words, the VAE-GAN inherits the advantages of VAE and GAN and avoids their limitations in modeling of fMRI data. Extensive experiments on task fMRI datasets from HCP have proved the effectiveness and superiority of the proposed VAE-GAN framework for identifying both temporal features and functional brain networks compared with existing models, and the quality of fake data is higher than those from VAE and GAN. The results on resting state fMRI of Attention Deficit Hyperactivity Disorder (ADHD)-200 dataset further demonstrated that the fake data generated by the VAE-GAN can help improve the performance of brain network modeling and ADHD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
Criminology34应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
35秒前
bobby仔完成签到,获得积分10
39秒前
Timelapse应助jjx1005采纳,获得50
39秒前
bobby仔发布了新的文献求助10
42秒前
共享精神应助bobby仔采纳,获得10
50秒前
慕青应助sweet1采纳,获得10
1分钟前
1分钟前
1分钟前
TEMPO发布了新的文献求助10
1分钟前
karstbing发布了新的文献求助10
1分钟前
1分钟前
寒冷的初彤完成签到,获得积分20
1分钟前
徐sir发布了新的文献求助10
1分钟前
andrewyu完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
huenguyenvan发布了新的文献求助10
2分钟前
lovewlp完成签到 ,获得积分10
2分钟前
DoLaso完成签到 ,获得积分10
3分钟前
3分钟前
zpli完成签到 ,获得积分10
3分钟前
3分钟前
彭彦舟发布了新的文献求助10
3分钟前
sweet1关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
chen完成签到 ,获得积分10
3分钟前
彭彦舟发布了新的文献求助10
4分钟前
sweet1发布了新的文献求助10
4分钟前
彭彦舟完成签到,获得积分20
4分钟前
完美世界应助彭彦舟采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714892
求助须知:如何正确求助?哪些是违规求助? 5227992
关于积分的说明 15273799
捐赠科研通 4866059
什么是DOI,文献DOI怎么找? 2612635
邀请新用户注册赠送积分活动 1562805
关于科研通互助平台的介绍 1520091