已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Functional brain network identification and fMRI augmentation using a VAE-GAN framework

计算机科学 过度拟合 鉴别器 人工智能 功能磁共振成像 模式识别(心理学) 静息状态功能磁共振成像 生成模型 机器学习 人工神经网络 生成语法 神经科学 心理学 电信 探测器
作者
Ning Qiang,Jie Gao,Qinglin Dong,Huiji Yue,Hongtao Liang,Lili Liu,Jingjing Yu,Jing Hu,Shu Zhang,Bao Ge,Yifei Sun,Zhengliang Liu,Tianming Liu,Jin Li,Hujie Song,Shijie Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107395-107395 被引量:19
标识
DOI:10.1016/j.compbiomed.2023.107395
摘要

Recently, deep learning models have achieved superior performance for mapping functional brain networks from functional magnetic resonance imaging (fMRI) data compared with traditional methods. However, due to the lack of sufficient data and the high dimensionality of brain volume, deep learning models of fMRI tend to suffer from overfitting. In addition, existing methods rarely studied fMRI data augmentation and its application. To address these issues, we developed a VAE-GAN framework that combined a VAE (variational auto-encoder) with a GAN (generative adversarial net) for functional brain network identification and fMRI augmentation. As a generative model, the VAE-GAN models the distribution of fMRI so that it enables the extraction of more generalized features, and thus relieve the overfitting issue. The VAE-GAN is easier to train on fMRI than a standard GAN since it uses latent variables from VAE to generate fake data rather than relying on random noise that is used in a GAN, and it can generate higher quality of fake data than VAE since the discriminator can promote the training of the generator. In other words, the VAE-GAN inherits the advantages of VAE and GAN and avoids their limitations in modeling of fMRI data. Extensive experiments on task fMRI datasets from HCP have proved the effectiveness and superiority of the proposed VAE-GAN framework for identifying both temporal features and functional brain networks compared with existing models, and the quality of fake data is higher than those from VAE and GAN. The results on resting state fMRI of Attention Deficit Hyperactivity Disorder (ADHD)-200 dataset further demonstrated that the fake data generated by the VAE-GAN can help improve the performance of brain network modeling and ADHD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜纸飞机完成签到 ,获得积分10
1秒前
G1997完成签到 ,获得积分10
1秒前
Ambi发布了新的文献求助10
2秒前
SamSimple完成签到,获得积分10
3秒前
激情的健柏完成签到 ,获得积分10
4秒前
科研通AI6.1应助yaya采纳,获得10
4秒前
6秒前
9秒前
英姑应助js采纳,获得10
10秒前
Moonpie应助科研通管家采纳,获得10
10秒前
Moonpie应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Moonpie应助科研通管家采纳,获得10
10秒前
Moonpie应助科研通管家采纳,获得10
10秒前
Moonpie应助科研通管家采纳,获得10
10秒前
Moonpie应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
甜甜的紫菜完成签到 ,获得积分10
11秒前
11秒前
柴柴完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
15秒前
无花果应助YuZhang采纳,获得10
18秒前
大家不要笑好吗完成签到,获得积分10
20秒前
Georgechan发布了新的文献求助30
21秒前
脑洞疼应助polywave采纳,获得10
22秒前
23秒前
24秒前
郜不正完成签到,获得积分10
25秒前
Lebpom发布了新的文献求助10
27秒前
怪怪完成签到 ,获得积分10
28秒前
28秒前
毛球发布了新的文献求助10
29秒前
我是老大应助念一采纳,获得30
30秒前
luckylumia完成签到,获得积分10
31秒前
脑洞疼应助读书的时候采纳,获得30
32秒前
Ava应助旭滟采纳,获得10
32秒前
忘忧Aquarius完成签到,获得积分10
34秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746340
求助须知:如何正确求助?哪些是违规求助? 5432754
关于积分的说明 15355163
捐赠科研通 4886241
什么是DOI,文献DOI怎么找? 2627141
邀请新用户注册赠送积分活动 1575625
关于科研通互助平台的介绍 1532338