Functional brain network identification and fMRI augmentation using a VAE-GAN framework

计算机科学 过度拟合 鉴别器 人工智能 功能磁共振成像 模式识别(心理学) 静息状态功能磁共振成像 生成模型 机器学习 人工神经网络 生成语法 神经科学 心理学 电信 探测器
作者
Ning Qiang,Jie Gao,Qinglin Dong,Huiji Yue,Hongtao Liang,Lili Liu,Jingjing Yu,Jing Hu,Shu Zhang,Bao Ge,Yifei Sun,Zhengliang Liu,Tianming Liu,Jin Li,Hujie Song,Shijie Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107395-107395 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107395
摘要

Recently, deep learning models have achieved superior performance for mapping functional brain networks from functional magnetic resonance imaging (fMRI) data compared with traditional methods. However, due to the lack of sufficient data and the high dimensionality of brain volume, deep learning models of fMRI tend to suffer from overfitting. In addition, existing methods rarely studied fMRI data augmentation and its application. To address these issues, we developed a VAE-GAN framework that combined a VAE (variational auto-encoder) with a GAN (generative adversarial net) for functional brain network identification and fMRI augmentation. As a generative model, the VAE-GAN models the distribution of fMRI so that it enables the extraction of more generalized features, and thus relieve the overfitting issue. The VAE-GAN is easier to train on fMRI than a standard GAN since it uses latent variables from VAE to generate fake data rather than relying on random noise that is used in a GAN, and it can generate higher quality of fake data than VAE since the discriminator can promote the training of the generator. In other words, the VAE-GAN inherits the advantages of VAE and GAN and avoids their limitations in modeling of fMRI data. Extensive experiments on task fMRI datasets from HCP have proved the effectiveness and superiority of the proposed VAE-GAN framework for identifying both temporal features and functional brain networks compared with existing models, and the quality of fake data is higher than those from VAE and GAN. The results on resting state fMRI of Attention Deficit Hyperactivity Disorder (ADHD)-200 dataset further demonstrated that the fake data generated by the VAE-GAN can help improve the performance of brain network modeling and ADHD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净亦巧发布了新的文献求助10
刚刚
光纤陀螺完成签到,获得积分10
刚刚
李健的小迷弟应助wmm采纳,获得30
1秒前
1秒前
wowser发布了新的文献求助10
1秒前
整齐的小霜完成签到,获得积分10
2秒前
慕青应助boymin2015采纳,获得10
3秒前
韩冬冬发布了新的文献求助30
3秒前
唐卟哩钵完成签到 ,获得积分10
3秒前
5秒前
稳重代容发布了新的文献求助30
5秒前
猪猪hero应助合适明雪采纳,获得10
5秒前
积极的板栗完成签到,获得积分10
6秒前
6秒前
wowser完成签到,获得积分10
6秒前
科研通AI5应助ahui采纳,获得30
6秒前
SciGPT应助雨落采纳,获得10
6秒前
7秒前
四喜丸子完成签到 ,获得积分10
7秒前
8秒前
共享精神应助余小平采纳,获得10
8秒前
8秒前
风马少年发布了新的文献求助10
8秒前
9秒前
淡淡冬瓜发布了新的文献求助10
9秒前
swingghost发布了新的文献求助10
10秒前
10秒前
11秒前
gougoudy完成签到,获得积分10
11秒前
zl应助温暖的颜演采纳,获得20
11秒前
华仔应助爱唱歌的yu仔采纳,获得10
12秒前
summer发布了新的文献求助10
12秒前
13秒前
tianshicanyi发布了新的文献求助10
14秒前
韩冬冬发布了新的文献求助30
15秒前
小乔发布了新的文献求助10
15秒前
嘉深发布了新的文献求助10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
ZeKaWa应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Positive association between abdominal aortic diameter and serum collagen XVIII levels 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3694562
求助须知:如何正确求助?哪些是违规求助? 3246079
关于积分的说明 9848544
捐赠科研通 2957747
什么是DOI,文献DOI怎么找? 1621686
邀请新用户注册赠送积分活动 767343
科研通“疑难数据库(出版商)”最低求助积分说明 741079