Functional brain network identification and fMRI augmentation using a VAE-GAN framework

计算机科学 过度拟合 鉴别器 人工智能 功能磁共振成像 模式识别(心理学) 静息状态功能磁共振成像 生成模型 机器学习 人工神经网络 生成语法 神经科学 心理学 电信 探测器
作者
Ning Qiang,Jie Gao,Qinglin Dong,Huiji Yue,Hongtao Liang,Lili Liu,Jingjing Yu,Jing Hu,Shu Zhang,Bao Ge,Yifei Sun,Zhengliang Liu,Tianming Liu,Jin Li,Hujie Song,Shijie Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107395-107395 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.107395
摘要

Recently, deep learning models have achieved superior performance for mapping functional brain networks from functional magnetic resonance imaging (fMRI) data compared with traditional methods. However, due to the lack of sufficient data and the high dimensionality of brain volume, deep learning models of fMRI tend to suffer from overfitting. In addition, existing methods rarely studied fMRI data augmentation and its application. To address these issues, we developed a VAE-GAN framework that combined a VAE (variational auto-encoder) with a GAN (generative adversarial net) for functional brain network identification and fMRI augmentation. As a generative model, the VAE-GAN models the distribution of fMRI so that it enables the extraction of more generalized features, and thus relieve the overfitting issue. The VAE-GAN is easier to train on fMRI than a standard GAN since it uses latent variables from VAE to generate fake data rather than relying on random noise that is used in a GAN, and it can generate higher quality of fake data than VAE since the discriminator can promote the training of the generator. In other words, the VAE-GAN inherits the advantages of VAE and GAN and avoids their limitations in modeling of fMRI data. Extensive experiments on task fMRI datasets from HCP have proved the effectiveness and superiority of the proposed VAE-GAN framework for identifying both temporal features and functional brain networks compared with existing models, and the quality of fake data is higher than those from VAE and GAN. The results on resting state fMRI of Attention Deficit Hyperactivity Disorder (ADHD)-200 dataset further demonstrated that the fake data generated by the VAE-GAN can help improve the performance of brain network modeling and ADHD classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
藤原拓海完成签到 ,获得积分10
1秒前
x跳发布了新的文献求助10
1秒前
4秒前
4秒前
zz完成签到,获得积分10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得30
6秒前
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
南瓜难应助科研通管家采纳,获得30
6秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
x跳完成签到,获得积分10
7秒前
XHY123完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助雪中采纳,获得10
8秒前
8秒前
8秒前
8秒前
dgq_81发布了新的文献求助10
9秒前
李健应助林璇璇采纳,获得10
9秒前
9秒前
慕青应助天真的红酒采纳,获得10
10秒前
10秒前
10秒前
11秒前
三木小君子应助虎虎虎采纳,获得10
11秒前
wikii发布了新的文献求助10
11秒前
zz发布了新的文献求助10
11秒前
可爱天川完成签到,获得积分20
11秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943