Generative adversarial networks based digital twin channel modeling for intelligent communication networks

计算机科学 频道(广播) 可靠性(半导体) 无线 数据建模 计算机网络 电信 量子力学 数据库 物理 功率(物理)
作者
Yuxin Zhang,Ruisi He,Bo Ai,Mi Yang,Ruifeng Chen,Chenlong Wang,Zhengyu Zhang,Zhangdui Zhong
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (8): 32-43 被引量:3
标识
DOI:10.23919/jcc.fa.2023-0206.202308
摘要

Integration of digital twin (DT) and wireless channel provides new solution of channel modeling and simulation, and can assist to design, optimize and evaluate intelligent wireless communication system and networks. With DT channel modeling, the generated channel data can be closer to realistic channel measurements without requiring a prior channel model, and amount of channel data can be significantly increased. Artificial intelligence (AI) based modeling approach shows outstanding performance to solve such problems. In this work, a channel modeling method based on generative adversarial networks is proposed for DT channel, which can generate identical statistical distribution with measured channel. Model validation is conducted by comparing DT channel characteristics with measurements, and results show that DT channel leads to fairly good agreement with measured channel. Finally, a link-layer simulation is implemented based on DT channel. It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data. The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications, as well as improving the performance and reliability of intelligent communication networking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
puppy应助陶醉觅夏采纳,获得10
2秒前
123发布了新的文献求助10
3秒前
木子安完成签到,获得积分10
4秒前
4秒前
5秒前
记忆里的阳光完成签到,获得积分10
6秒前
美好斓发布了新的文献求助10
6秒前
美满广缘发布了新的文献求助10
6秒前
step_stone应助韭菜采纳,获得30
6秒前
6秒前
顾矜应助韭菜采纳,获得10
6秒前
6秒前
WANG发布了新的文献求助10
10秒前
华仔应助HearbaRtNDY采纳,获得10
11秒前
XiaoMing完成签到,获得积分10
13秒前
韭菜完成签到,获得积分20
15秒前
15秒前
Edward完成签到 ,获得积分10
16秒前
激昂的店员完成签到,获得积分10
16秒前
搜集达人应助WANG采纳,获得10
18秒前
小于发布了新的文献求助10
20秒前
且歌且行完成签到,获得积分10
22秒前
24秒前
iNk应助Jeffery426采纳,获得10
24秒前
25秒前
丰知然应助asww采纳,获得10
26秒前
酷炫惮完成签到,获得积分10
26秒前
26秒前
27秒前
不想起昵称完成签到 ,获得积分10
28秒前
30秒前
李浩发布了新的文献求助10
30秒前
Lucky小M完成签到,获得积分10
30秒前
HearbaRtNDY发布了新的文献求助10
30秒前
青岩发布了新的文献求助10
32秒前
superbanggg完成签到,获得积分10
33秒前
34秒前
35秒前
星辰大海应助小于采纳,获得10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313702
求助须知:如何正确求助?哪些是违规求助? 2945997
关于积分的说明 8527826
捐赠科研通 2621588
什么是DOI,文献DOI怎么找? 1433925
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650648