TRNSYS公司
热泵
碳足迹
环境科学
空气源热泵
核退役
冷冻机
废物管理
工艺工程
生命周期评估
温室气体
汽车工程
工程类
环境工程
气象学
热交换器
机械工程
热的
生产(经济)
宏观经济学
经济
物理
热力学
生物
生态学
标识
DOI:10.1080/15567036.2023.2271414
摘要
ABSTRACTAir source assisted ground source composite heat pump (DSHP) system is a combination of ground source heat pump (GSHP) and air source heat pump (ASHP) that makes use of both underground and outdoor temperatures to ensure long-term stability and reliability. The development of a carbon emission model for DSHP system involved a life-cycle assessment (LCA). This model was used to analyze the energy savings of DSHP in two different areas of China Nanjing and Hohhot. In both cases, an office building with an area of 3040 m2 was used as the subject of the study. The evaluation of energy savings using TRNSYS dynamic simulations revealed that the operation stage accounts for about 75%-85% of the carbon emission in the entire life cycle assessment of DSHP systems, Among them, refrigerant leakage produces a carbon footprint of more than 20%. The installation stage accounts for about 10% of the emissions, while the adjustment of the power energy structure during operation is crucial in achieving energy savings and emission reductions. A comparison study shows that DSHP can lower emissions by up to 23% when compared to traditional air conditioning systems like gas boiler and chiller system (BLR-CH). The use of DSHP is therefore a highly effective alternative for organizations committed to reducing their carbon footprint.KEYWORDS: Composite heat pump systemlife cycle assessmentcarbon emissionenergy saving Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/15567036.2023.2271414.Additional informationFundingThis research received no external funding.Notes on contributorsYuyan LiuYuyan Liu, is a graduate student at the School of Energy and Mechanical Engineering at Nanjing Normal University.Xueying XiaXueying Xia, Ph.D., is the corresponding author and is an associate professor at the School of Energy and Mechanical Engineering at Nanjing Normal University.
科研通智能强力驱动
Strongly Powered by AbleSci AI