Echocardiography-Based Deep Learning Model to Differentiate Constrictive Pericarditis and Restrictive Cardiomyopathy

缩窄性心包炎 医学 限制性心肌病 内科学 心脏病学 心肌病 舒张期 心脏磁共振成像 心包炎 人工智能 心力衰竭 放射科 磁共振成像 计算机科学 血压
作者
Chieh‐Ju Chao,Jiwoong Jeong,Reza Arsanjani,Ki Hong Kim,Yi‐Lin Tsai,WEN‐CHUNG YU,Juan Farina,Ahmed Mahmoud,Chadi Ayoub,Martha Grogan,Garvan C. Kane,Imon Banerjee,Jae K. Oh
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:17 (4): 349-360 被引量:26
标识
DOI:10.1016/j.jcmg.2023.09.011
摘要

Constrictive pericarditis (CP) is an uncommon but reversible cause of diastolic heart failure if appropriately identified and treated. However, its diagnosis remains a challenge for clinicians. Artificial intelligence may enhance the identification of CP. The authors proposed a deep learning approach based on transthoracic echocardiography to differentiate CP from restrictive cardiomyopathy. Patients with a confirmed diagnosis of CP and cardiac amyloidosis (CA) (as the representative disease of restrictive cardiomyopathy) at Mayo Clinic Rochester from January 2003 to December 2021 were identified to extract baseline demographics. The apical 4-chamber view from transthoracic echocardiography studies was used as input data. The patients were split into a 60:20:20 ratio for training, validation, and held-out test sets of the ResNet50 deep learning model. The model performance (differentiating CP and CA) was evaluated in the test set with the area under the curve. GradCAM was used for model interpretation. A total of 381 patients were identified, including 184 (48.3%) CP, and 197 (51.7%) CA cases. The mean age was 68.7 ± 11.4 years, and 72.8% were male. ResNet50 had a performance with an area under the curve of 0.97 to differentiate the 2-class classification task (CP vs CA). The GradCAM heatmap showed activation around the ventricular septal area. With a standard apical 4-chamber view, our artificial intelligence model provides a platform to facilitate the detection of CP, allowing for improved workflow efficiency and prompt referral for more advanced evaluation and intervention of CP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夕子爱科研完成签到,获得积分10
1秒前
yolo完成签到,获得积分10
1秒前
Jianyu发布了新的文献求助10
2秒前
研友_VZG7GZ应助喜悦的黑夜采纳,获得10
2秒前
梦幻时空发布了新的文献求助10
2秒前
3秒前
小满完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
跳跃的语柔完成签到 ,获得积分10
6秒前
6秒前
科研通AI6.1应助赵赵采纳,获得10
6秒前
wangjianming完成签到 ,获得积分10
7秒前
361完成签到,获得积分20
7秒前
我是老大应助Zhi采纳,获得10
7秒前
hh完成签到,获得积分10
8秒前
pgojpogk完成签到,获得积分10
8秒前
百里完成签到,获得积分10
8秒前
天青色等烟雨完成签到,获得积分10
8秒前
iNk应助hxj采纳,获得10
8秒前
9秒前
yy111完成签到,获得积分10
9秒前
77wlr发布了新的文献求助10
9秒前
段段完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
齐百七完成签到,获得积分10
10秒前
hh发布了新的文献求助10
11秒前
痒痒硕鼠完成签到,获得积分10
11秒前
刘宇航完成签到,获得积分10
11秒前
小董发布了新的文献求助10
12秒前
李倇仪完成签到,获得积分10
13秒前
13秒前
龙虾发票完成签到,获得积分0
13秒前
14秒前
14秒前
潇洒的诗桃完成签到,获得积分0
14秒前
姜水完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5817082
求助须知:如何正确求助?哪些是违规求助? 5945082
关于积分的说明 15546233
捐赠科研通 4939264
什么是DOI,文献DOI怎么找? 2660442
邀请新用户注册赠送积分活动 1606714
关于科研通互助平台的介绍 1561625