CS-WSCDNet: Class Activation Mapping and Segment Anything Model-Based Framework for Weakly Supervised Change Detection

像素 计算机科学 变更检测 人工智能 分类器(UML) 分割 模式识别(心理学) 班级(哲学) 领域(数学) 深度学习 计算机视觉 数学 纯数学
作者
Lukang Wang,Min Zhang,Wenzhong Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:10
标识
DOI:10.1109/tgrs.2023.3330479
摘要

Change detection (CD) using deep learning techniques is a trending topic in the field of remote sensing. However, most existing networks require pixel-level labels for supervised learning, which is difficult and time-consuming to label all changed pixels from multi-temporal images. To address this challenge, we propose a novel framework for weakly supervised change detection (WSCD), namely CS-WSCDNet, which can achieve pixel-level results by training on samples with image-level labels. Specifically, the framework is built upon the localization capability of class activation mapping (CAM) and the powerful zero-shot segmentation ability of the foundation model, i.e., segment anything model (SAM). After training an image-level classifier to identify whether changes have occurred in the image pair, CAM is utilized to roughly localize the regions of change in the images pair. Subsequently, SAM is employed to optimize these rough regions and generate pixel-level pseudo-labels for changed objects. These pseudo-labels are then used to train a CD model at the pixel-level. To evaluate the effectiveness of CS-WSCDNet, experiments are conducted on two high-resolution remote sensing datasets. It shows that the proposed framework not only achieves state-of-the-art (SOTA) performance in WSCD tasks but also demonstrates the potential of weakly supervised learning in the field of CD. The demo codes are available at https://github.com/WangLukang/CS-WSCDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Fanorm采纳,获得10
1秒前
xiaoluoluo完成签到,获得积分10
1秒前
1秒前
1秒前
积极行天发布了新的文献求助10
1秒前
酷酷依秋完成签到,获得积分10
2秒前
2秒前
2秒前
Sugaryeah完成签到,获得积分10
2秒前
3秒前
3秒前
sun完成签到,获得积分10
3秒前
4秒前
君衡发布了新的文献求助10
4秒前
4秒前
5秒前
stray1221发布了新的文献求助30
5秒前
SUIRIGO完成签到,获得积分10
5秒前
6秒前
6秒前
overfly完成签到,获得积分20
6秒前
6秒前
肖珂完成签到,获得积分10
6秒前
朴素羊完成签到 ,获得积分10
7秒前
7秒前
7秒前
喵喵发布了新的文献求助10
7秒前
科研通AI2S应助hhhhhh采纳,获得10
7秒前
孟依白发布了新的文献求助10
8秒前
浮游应助小狗邮递员采纳,获得10
8秒前
邢大志发布了新的文献求助10
8秒前
8秒前
球宝完成签到,获得积分10
8秒前
垣味栗子酱完成签到,获得积分10
9秒前
自由大白菜真实的钥匙完成签到,获得积分10
9秒前
chens627完成签到,获得积分10
9秒前
bella完成签到,获得积分10
9秒前
迷你的绿竹完成签到,获得积分20
10秒前
momo发布了新的文献求助10
10秒前
kingcoming发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5189698
求助须知:如何正确求助?哪些是违规求助? 4373792
关于积分的说明 13617986
捐赠科研通 4227327
什么是DOI,文献DOI怎么找? 2318644
邀请新用户注册赠送积分活动 1317304
关于科研通互助平台的介绍 1267224