CS-WSCDNet: Class Activation Mapping and Segment Anything Model-Based Framework for Weakly Supervised Change Detection

像素 计算机科学 变更检测 人工智能 分类器(UML) 分割 模式识别(心理学) 班级(哲学) 领域(数学) 深度学习 计算机视觉 数学 纯数学
作者
Lukang Wang,Min Zhang,Wenzhong Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:7
标识
DOI:10.1109/tgrs.2023.3330479
摘要

Change detection (CD) using deep learning techniques is a trending topic in the field of remote sensing. However, most existing networks require pixel-level labels for supervised learning, which is difficult and time-consuming to label all changed pixels from multi-temporal images. To address this challenge, we propose a novel framework for weakly supervised change detection (WSCD), namely CS-WSCDNet, which can achieve pixel-level results by training on samples with image-level labels. Specifically, the framework is built upon the localization capability of class activation mapping (CAM) and the powerful zero-shot segmentation ability of the foundation model, i.e., segment anything model (SAM). After training an image-level classifier to identify whether changes have occurred in the image pair, CAM is utilized to roughly localize the regions of change in the images pair. Subsequently, SAM is employed to optimize these rough regions and generate pixel-level pseudo-labels for changed objects. These pseudo-labels are then used to train a CD model at the pixel-level. To evaluate the effectiveness of CS-WSCDNet, experiments are conducted on two high-resolution remote sensing datasets. It shows that the proposed framework not only achieves state-of-the-art (SOTA) performance in WSCD tasks but also demonstrates the potential of weakly supervised learning in the field of CD. The demo codes are available at https://github.com/WangLukang/CS-WSCDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
TINGER完成签到,获得积分10
3秒前
zkwww发布了新的文献求助10
4秒前
4秒前
SciGPT应助AA采纳,获得10
5秒前
7秒前
英姑应助小马采纳,获得10
7秒前
7秒前
嗯哼应助阳光的道消采纳,获得20
7秒前
丘比特应助sxpab采纳,获得10
8秒前
enterdawn应助luozhuang2023采纳,获得10
8秒前
enterdawn应助luozhuang2023采纳,获得10
8秒前
慕青应助luozhuang2023采纳,获得10
8秒前
8秒前
微笑初柔关注了科研通微信公众号
10秒前
10秒前
Tina完成签到 ,获得积分10
11秒前
失忆的金鱼应助yyyyy采纳,获得10
11秒前
cyp发布了新的文献求助10
12秒前
12秒前
aaaaaab发布了新的文献求助10
13秒前
EMM完成签到,获得积分10
13秒前
13秒前
14秒前
852应助welch采纳,获得10
15秒前
15秒前
16秒前
17秒前
17秒前
18秒前
爱静静应助酷炫的毛巾采纳,获得10
18秒前
1111发布了新的文献求助10
19秒前
南风不竞发布了新的文献求助10
20秒前
22秒前
22秒前
科研通AI2S应助李小胖采纳,获得10
23秒前
23秒前
微笑初柔发布了新的文献求助10
23秒前
锦玟发布了新的文献求助10
24秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260377
求助须知:如何正确求助?哪些是违规求助? 2901608
关于积分的说明 8316245
捐赠科研通 2571210
什么是DOI,文献DOI怎么找? 1396863
科研通“疑难数据库(出版商)”最低求助积分说明 653598
邀请新用户注册赠送积分活动 632034