CS-WSCDNet: Class Activation Mapping and Segment Anything Model-Based Framework for Weakly Supervised Change Detection

像素 计算机科学 变更检测 人工智能 分类器(UML) 分割 模式识别(心理学) 班级(哲学) 领域(数学) 深度学习 计算机视觉 数学 纯数学
作者
Lukang Wang,Min Zhang,Wenzhong Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:10
标识
DOI:10.1109/tgrs.2023.3330479
摘要

Change detection (CD) using deep learning techniques is a trending topic in the field of remote sensing. However, most existing networks require pixel-level labels for supervised learning, which is difficult and time-consuming to label all changed pixels from multi-temporal images. To address this challenge, we propose a novel framework for weakly supervised change detection (WSCD), namely CS-WSCDNet, which can achieve pixel-level results by training on samples with image-level labels. Specifically, the framework is built upon the localization capability of class activation mapping (CAM) and the powerful zero-shot segmentation ability of the foundation model, i.e., segment anything model (SAM). After training an image-level classifier to identify whether changes have occurred in the image pair, CAM is utilized to roughly localize the regions of change in the images pair. Subsequently, SAM is employed to optimize these rough regions and generate pixel-level pseudo-labels for changed objects. These pseudo-labels are then used to train a CD model at the pixel-level. To evaluate the effectiveness of CS-WSCDNet, experiments are conducted on two high-resolution remote sensing datasets. It shows that the proposed framework not only achieves state-of-the-art (SOTA) performance in WSCD tasks but also demonstrates the potential of weakly supervised learning in the field of CD. The demo codes are available at https://github.com/WangLukang/CS-WSCDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
抹茶芝士酸奶完成签到,获得积分10
刚刚
刚刚
2秒前
苏苏发布了新的文献求助10
4秒前
Rondab应助kingJames采纳,获得10
4秒前
北北发布了新的文献求助10
4秒前
凉风送信完成签到,获得积分10
4秒前
5秒前
Muhammad发布了新的文献求助10
6秒前
6秒前
上官若男应助陈曦采纳,获得10
6秒前
Yi完成签到 ,获得积分10
7秒前
桀桀桀发布了新的文献求助10
9秒前
11秒前
11秒前
乌禅发布了新的文献求助10
12秒前
13秒前
Lost发布了新的文献求助10
14秒前
14秒前
Jiang_wencai完成签到,获得积分10
15秒前
17秒前
上官若男应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
aldehyde应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得30
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
21秒前
aldehyde应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176