Statistical comparison of predictive models for quantitative analysis and classification in the framework of LIBS spectroscopy: A tutorial

均方误差 激光诱导击穿光谱 集合(抽象数据类型) 计算机科学 统计模型 构造(python库) 人工智能 预测建模 机器学习 统计 数据挖掘 模式识别(心理学) 数学 激光器 物理 光学 程序设计语言
作者
Ludovic Duponchel,C. Fabre,Bruno Bousquet,Vincent Motto‐Ros
出处
期刊:Spectrochimica Acta Part B: Atomic Spectroscopy [Elsevier BV]
卷期号:208: 106776-106776 被引量:1
标识
DOI:10.1016/j.sab.2023.106776
摘要

Laser-Induced Breakdown Spectroscopy (LIBS) is a widely accepted technique used for both classification and quantification purposes considering complex and heterogeous samples. Based on a set of training spectra acquired from diverse and representative samples within a specific application domain, it becomes possible to apply various data processing techniques and modeling methods to construct the predictive model in question. Naturally the complexity of both the laser-matter and the laser-plasma interactions and the heterogeneity of natural samples often requires the development of various predictive models, which are then compared based on figures of merit such as the RMSEP (Root Mean Square Error of Prediction) value for quantification or the classification rate for qualitative analysis. Our ultimate goal is, of course, to select the model that appears to be the most accurate, which ultimately boils down to searching for the lowest RMSEP value or the highest classification rate. This is precisely where the whole problem lies because even if we observe a different level of error for two models, for example, this difference is not necessarily statistically significant. In such a case, we are therefore not allowed to say that the lower error indicates the best predictive model to consider. The purpose of this article is to provide a tutorial on introducing a statistical model comparison procedure, whether they are quantitative or qualitative. Two LIBS data sets have been used to illustrate the principles of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王月帆发布了新的文献求助10
刚刚
刚刚
老阳发布了新的文献求助10
1秒前
北斗HH完成签到,获得积分10
2秒前
宋宋完成签到 ,获得积分10
3秒前
Owen应助hebhm采纳,获得10
7秒前
8秒前
清安发布了新的文献求助10
8秒前
梵高的向日葵完成签到 ,获得积分10
9秒前
10秒前
科研通AI5应助ll采纳,获得10
14秒前
hjc641发布了新的文献求助10
14秒前
Holland应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
小马过河应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
18秒前
Eric完成签到,获得积分10
19秒前
王月帆完成签到,获得积分10
19秒前
21秒前
22秒前
23秒前
hebhm发布了新的文献求助10
23秒前
24秒前
Owen应助老阳采纳,获得10
25秒前
善学以致用应助王月帆采纳,获得10
26秒前
26秒前
安生完成签到,获得积分10
27秒前
Swindler发布了新的文献求助10
27秒前
科研通AI5应助少林一只蛋采纳,获得10
29秒前
zzz发布了新的文献求助10
29秒前
29秒前
ll发布了新的文献求助10
30秒前
隔壁海绵宝宝完成签到,获得积分10
32秒前
充电宝应助Michelle采纳,获得10
32秒前
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738649
求助须知:如何正确求助?哪些是违规求助? 3282012
关于积分的说明 10027267
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645497
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975