Development of passivating edge shingle modules with right cut, new loss evaluation and liquid-based edge passivation strategy

钝化 GSM演进的增强数据速率 光伏系统 太阳能电池 能量转换效率 炼金术中的太阳 开路电压 材料科学 光电子学 工艺工程 电气工程 计算机科学 电压 工程类 图层(电子) 纳米技术 电信
作者
Xiao Wang,Xuning Zhang,Yuhua Bai,Wenheng Li,Bingbing Chen,Jianxin Guo,Xueliang Yang,Xiaobing Yan,Shufang Wang,Jianhui Chen
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:261: 112513-112513 被引量:8
标识
DOI:10.1016/j.solmat.2023.112513
摘要

Shingle interconnected cells and high-performance silicon solar cells are the main technologies applied for the development of next-generation Photovoltaic (PV). Nonetheless, the assembly process of high-efficiency shingle configuration modules faces several problems. Such challenges encompass the processes of complete silicon cell separation, the proper assessment of the losses during cell separation, and the post-passivation treatment of newly formed edges in the shingle module. We conducted this study to address the aforementioned issues. I) Our findings revealed that the cutting during high-efficiency cell separation should be performed on the back surface field (BSF) side; II) Furthermore, we quantified the slice cutting loss by introducing a rational definition of the cell separation factor K and utilizing the Suns-VOC method; III) Additionally, we developed efficient shingle mini-modules and passivated the sub-cell edge of the modules. These measures resulted in a considerable increase in the output power of the PV module while effectively reducing cell-to-module (CTM) losses. Based on the concept of the "Liquid-based Edge Passivation Strategy (LEPS)"- developed in this work, using a four-sub-cell configuration shingle mini-module, we finally achieved the following increased parameter efficiency: +0.32% of abs, +15.1 mV of open circuit voltage, +0.76% of fill factor, and +7.8 mW of power gain. The results obtained in this research culminated in advancing the methods employed in assembling next-generation high-efficiency PV modules and striking maximum power output PV modules. Moreover, our present findings serve as a technical reference and open up new avenues for the potential photovoltaic industry transformation and upgrading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助爱做实验的泡利采纳,获得10
刚刚
SONGYEZI应助嘉斯汀采纳,获得20
刚刚
欣喜的长颈鹿完成签到,获得积分10
1秒前
2秒前
2秒前
要减肥的乐曲完成签到,获得积分10
3秒前
4秒前
4秒前
xxfsx应助刘兆亮采纳,获得10
4秒前
4秒前
刘源完成签到,获得积分10
5秒前
大个应助LS采纳,获得10
5秒前
诸事皆顺完成签到,获得积分10
6秒前
Denvir发布了新的文献求助80
6秒前
suhua完成签到,获得积分10
6秒前
athena完成签到 ,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
舒博博完成签到 ,获得积分10
8秒前
张haha完成签到 ,获得积分20
9秒前
9秒前
渭春天合完成签到,获得积分10
9秒前
华仔应助honghuhe采纳,获得10
9秒前
昭奚发布了新的文献求助10
9秒前
10秒前
研友_VZG7GZ应助tmj采纳,获得10
11秒前
12秒前
12秒前
飘逸烨华完成签到,获得积分10
13秒前
小蘑菇应助tangrzh采纳,获得30
13秒前
xxfsx应助轻松的妍采纳,获得10
13秒前
13秒前
Yang发布了新的文献求助30
13秒前
LSF发布了新的文献求助10
13秒前
xxfsx应助温柔梦易采纳,获得10
14秒前
yly发布了新的文献求助10
14秒前
14秒前
喂喂喂完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458439
求助须知:如何正确求助?哪些是违规求助? 4564491
关于积分的说明 14295328
捐赠科研通 4489396
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466