Development of passivating edge shingle modules with right cut, new loss evaluation and liquid-based edge passivation strategy

钝化 GSM演进的增强数据速率 光伏系统 太阳能电池 能量转换效率 炼金术中的太阳 开路电压 材料科学 光电子学 工艺工程 电气工程 计算机科学 电压 工程类 图层(电子) 纳米技术 电信
作者
Xiao Wang,Xuning Zhang,Yuhua Bai,Wenheng Li,Bingbing Chen,Jianxin Guo,Xueliang Yang,Xiaobing Yan,Shufang Wang,Jianhui Chen
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:261: 112513-112513 被引量:8
标识
DOI:10.1016/j.solmat.2023.112513
摘要

Shingle interconnected cells and high-performance silicon solar cells are the main technologies applied for the development of next-generation Photovoltaic (PV). Nonetheless, the assembly process of high-efficiency shingle configuration modules faces several problems. Such challenges encompass the processes of complete silicon cell separation, the proper assessment of the losses during cell separation, and the post-passivation treatment of newly formed edges in the shingle module. We conducted this study to address the aforementioned issues. I) Our findings revealed that the cutting during high-efficiency cell separation should be performed on the back surface field (BSF) side; II) Furthermore, we quantified the slice cutting loss by introducing a rational definition of the cell separation factor K and utilizing the Suns-VOC method; III) Additionally, we developed efficient shingle mini-modules and passivated the sub-cell edge of the modules. These measures resulted in a considerable increase in the output power of the PV module while effectively reducing cell-to-module (CTM) losses. Based on the concept of the "Liquid-based Edge Passivation Strategy (LEPS)"- developed in this work, using a four-sub-cell configuration shingle mini-module, we finally achieved the following increased parameter efficiency: +0.32% of abs, +15.1 mV of open circuit voltage, +0.76% of fill factor, and +7.8 mW of power gain. The results obtained in this research culminated in advancing the methods employed in assembling next-generation high-efficiency PV modules and striking maximum power output PV modules. Moreover, our present findings serve as a technical reference and open up new avenues for the potential photovoltaic industry transformation and upgrading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助Nanki采纳,获得80
刚刚
hbchenlibing发布了新的文献求助10
1秒前
科研王帝同学完成签到 ,获得积分10
1秒前
寒霜扬名完成签到 ,获得积分10
1秒前
思源应助xmf采纳,获得10
2秒前
幻幻完成签到,获得积分10
2秒前
小乐完成签到 ,获得积分10
2秒前
3秒前
金金完成签到,获得积分10
3秒前
grey发布了新的文献求助10
3秒前
3秒前
糖糖完成签到 ,获得积分10
3秒前
神华发布了新的文献求助10
3秒前
研友_8RlQ2n完成签到,获得积分10
3秒前
小波发布了新的文献求助10
4秒前
快乐科研完成签到,获得积分10
4秒前
sdd完成签到,获得积分10
4秒前
小马甲应助感动冰海采纳,获得10
4秒前
4秒前
4秒前
jc2001完成签到,获得积分10
5秒前
5秒前
5秒前
YJY完成签到,获得积分10
6秒前
水上书发布了新的文献求助10
6秒前
NI完成签到 ,获得积分10
6秒前
Zkxxxx完成签到,获得积分10
7秒前
8秒前
新手菜鸟发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
在水一方应助lqh采纳,获得10
9秒前
min完成签到,获得积分10
9秒前
慕青应助快乐科研采纳,获得10
9秒前
科研橙子完成签到,获得积分10
9秒前
10秒前
hbkj完成签到,获得积分10
10秒前
SKD完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439470
求助须知:如何正确求助?哪些是违规求助? 4550649
关于积分的说明 14225656
捐赠科研通 4471747
什么是DOI,文献DOI怎么找? 2450474
邀请新用户注册赠送积分活动 1441297
关于科研通互助平台的介绍 1417901