Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis

医学 无线电技术 肝细胞癌 荟萃分析 放射科 肿瘤科 内科学 人工智能 计算机科学
作者
Jin Jin,Ying Jiang,Yulan Zhao,Pintong Huang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 467-479 被引量:15
标识
DOI:10.1016/j.acra.2023.09.008
摘要

Rationale and Objectives

Recurrence of hepatocellular carcinoma (HCC) is a major concern in its management. Accurately predicting the risk of recurrence is crucial for determining appropriate treatment strategies and improving patient outcomes. A certain amount of radiomics models for HCC recurrence prediction have been proposed. This study aimed to assess the role of radiomics models in the prediction of HCC recurrence and to evaluate their methodological quality.

Materials and Methods

Databases Cochrane Library, Web of Science, PubMed, and Embase were searched until July 11, 2023 for studies eligible for the meta-analysis. Their methodological quality was evaluated using the Radiomics Quality Score (RQS). The predictive ability of the radiomics model, clinical model, and the combined model integrating the clinical characteristics with radiomics signatures was measured using the concordance index (C-index), sensitivity, and specificity. Radiomics models in included studies were compared based on different imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound/sonography (US), contrast-enhanced ultrasound (CEUS).

Results

A total of 49 studies were included. On the validation cohort, radiomics model performed better (CT: C-index = 0.747, 95% CI: 0.70–0.79; MRI: C-index = 0.788, 95% CI: 0.75–0.83; CEUS: C-index = 0.763, 95% CI: 0.60–0.93) compared to the clinical model (C-index = 0.671, 95% CI: 0.65–0.70), except for ultrasound-based models (C-index = 0.560, 95% CI: 0.53–0.59). The combined model outperformed other models (CT: C-index = 0.790, 95% CI: 0.76–0.82; MRI: C-index = 0.826, 95% CI: 0.79–0.86; US: C-index = 0.760, 95% CI: 0.65–0.87), except for CEUS-based combined models (C-index = 0.707, 95% CI: 0.44–0.97).

Conclusion

Radiomics holds the potential to predict HCC recurrence and demonstrates enhanced predictive value across various imaging modalities when integrated with clinical features. Nevertheless, further studies are needed to optimize the radiomics approach and validate the results in larger, multi-center cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
国家栋梁发布了新的文献求助10
1秒前
key完成签到,获得积分10
2秒前
4秒前
CG2021发布了新的文献求助10
8秒前
清秀的毒娘完成签到 ,获得积分10
8秒前
打打应助超级纸飞机采纳,获得10
9秒前
11秒前
胡图图完成签到 ,获得积分10
13秒前
小橘子发布了新的文献求助10
13秒前
mmz完成签到 ,获得积分10
14秒前
yar应助WD采纳,获得10
16秒前
17秒前
Zunseng应助大力云朵采纳,获得10
18秒前
高大绝义发布了新的文献求助10
18秒前
19秒前
李雅敏关注了科研通微信公众号
22秒前
23秒前
24秒前
薛雯发布了新的文献求助10
24秒前
小郭求学发布了新的文献求助10
27秒前
吴皮皮鲁发布了新的文献求助10
28秒前
李悟尔发布了新的文献求助50
28秒前
洒松雪发布了新的文献求助30
29秒前
32秒前
32秒前
糟糕的铁锤完成签到,获得积分0
33秒前
33秒前
吴皮皮鲁完成签到,获得积分10
33秒前
在水一方应助苏卿采纳,获得30
34秒前
量子星尘发布了新的文献求助10
34秒前
桐桐应助洒松雪采纳,获得10
35秒前
李悟尔完成签到,获得积分10
36秒前
Alkaline7432完成签到,获得积分10
36秒前
老默发布了新的文献求助10
37秒前
37秒前
小橘子发布了新的文献求助10
37秒前
38秒前
39秒前
fapaper完成签到,获得积分10
39秒前
小郭求学完成签到,获得积分20
39秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182