Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis

医学 无线电技术 肝细胞癌 荟萃分析 一致性 放射科 磁共振成像 超声波 内科学 核医学
作者
Jin Jin,Ying Jiang,Yulan Zhao,Pintong Huang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (2): 467-479 被引量:7
标识
DOI:10.1016/j.acra.2023.09.008
摘要

Rationale and Objectives

Recurrence of hepatocellular carcinoma (HCC) is a major concern in its management. Accurately predicting the risk of recurrence is crucial for determining appropriate treatment strategies and improving patient outcomes. A certain amount of radiomics models for HCC recurrence prediction have been proposed. This study aimed to assess the role of radiomics models in the prediction of HCC recurrence and to evaluate their methodological quality.

Materials and Methods

Databases Cochrane Library, Web of Science, PubMed, and Embase were searched until July 11, 2023 for studies eligible for the meta-analysis. Their methodological quality was evaluated using the Radiomics Quality Score (RQS). The predictive ability of the radiomics model, clinical model, and the combined model integrating the clinical characteristics with radiomics signatures was measured using the concordance index (C-index), sensitivity, and specificity. Radiomics models in included studies were compared based on different imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound/sonography (US), contrast-enhanced ultrasound (CEUS).

Results

A total of 49 studies were included. On the validation cohort, radiomics model performed better (CT: C-index = 0.747, 95% CI: 0.70–0.79; MRI: C-index = 0.788, 95% CI: 0.75–0.83; CEUS: C-index = 0.763, 95% CI: 0.60–0.93) compared to the clinical model (C-index = 0.671, 95% CI: 0.65–0.70), except for ultrasound-based models (C-index = 0.560, 95% CI: 0.53–0.59). The combined model outperformed other models (CT: C-index = 0.790, 95% CI: 0.76–0.82; MRI: C-index = 0.826, 95% CI: 0.79–0.86; US: C-index = 0.760, 95% CI: 0.65–0.87), except for CEUS-based combined models (C-index = 0.707, 95% CI: 0.44–0.97).

Conclusion

Radiomics holds the potential to predict HCC recurrence and demonstrates enhanced predictive value across various imaging modalities when integrated with clinical features. Nevertheless, further studies are needed to optimize the radiomics approach and validate the results in larger, multi-center cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maaicui发布了新的文献求助10
刚刚
李健应助akjsi采纳,获得10
1秒前
Foremelon发布了新的文献求助10
1秒前
sssss发布了新的文献求助10
2秒前
3秒前
小值钱完成签到,获得积分10
4秒前
HHHHH完成签到,获得积分20
4秒前
Owen应助Druid采纳,获得10
5秒前
靓丽雨梅完成签到,获得积分10
6秒前
Cala洛~完成签到 ,获得积分10
9秒前
yolanda发布了新的文献求助10
10秒前
远山有灯完成签到,获得积分10
11秒前
keke完成签到,获得积分10
11秒前
11秒前
Singularity应助调皮千兰采纳,获得10
12秒前
倩倩发布了新的文献求助20
13秒前
汉堡包应助cy程采纳,获得10
15秒前
Aprilni完成签到,获得积分10
17秒前
17秒前
酷波er应助PG采纳,获得10
18秒前
nnnnn完成签到,获得积分10
18秒前
18秒前
苏柏亚完成签到,获得积分10
18秒前
杨杨完成签到 ,获得积分10
18秒前
科研通AI2S应助zzd12318采纳,获得10
19秒前
骑着单车去旅行完成签到,获得积分10
19秒前
娜娜完成签到,获得积分10
19秒前
21秒前
暖暖完成签到,获得积分10
21秒前
独行侠完成签到,获得积分10
21秒前
哭泣飞雪完成签到,获得积分10
21秒前
23秒前
23秒前
李小布发布了新的文献求助10
24秒前
科研小锄头完成签到,获得积分20
25秒前
无花果应助科研通管家采纳,获得10
25秒前
一页书发布了新的文献求助10
25秒前
微笑的涛应助科研通管家采纳,获得10
26秒前
26秒前
licheng完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148165
求助须知:如何正确求助?哪些是违规求助? 2799249
关于积分的说明 7834127
捐赠科研通 2456451
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655