Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis

医学 无线电技术 肝细胞癌 荟萃分析 放射科 肿瘤科 内科学 人工智能 计算机科学
作者
Jin Jin,Ying Jiang,Yulan Zhao,Pintong Huang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (2): 467-479 被引量:28
标识
DOI:10.1016/j.acra.2023.09.008
摘要

Rationale and Objectives

Recurrence of hepatocellular carcinoma (HCC) is a major concern in its management. Accurately predicting the risk of recurrence is crucial for determining appropriate treatment strategies and improving patient outcomes. A certain amount of radiomics models for HCC recurrence prediction have been proposed. This study aimed to assess the role of radiomics models in the prediction of HCC recurrence and to evaluate their methodological quality.

Materials and Methods

Databases Cochrane Library, Web of Science, PubMed, and Embase were searched until July 11, 2023 for studies eligible for the meta-analysis. Their methodological quality was evaluated using the Radiomics Quality Score (RQS). The predictive ability of the radiomics model, clinical model, and the combined model integrating the clinical characteristics with radiomics signatures was measured using the concordance index (C-index), sensitivity, and specificity. Radiomics models in included studies were compared based on different imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound/sonography (US), contrast-enhanced ultrasound (CEUS).

Results

A total of 49 studies were included. On the validation cohort, radiomics model performed better (CT: C-index = 0.747, 95% CI: 0.70–0.79; MRI: C-index = 0.788, 95% CI: 0.75–0.83; CEUS: C-index = 0.763, 95% CI: 0.60–0.93) compared to the clinical model (C-index = 0.671, 95% CI: 0.65–0.70), except for ultrasound-based models (C-index = 0.560, 95% CI: 0.53–0.59). The combined model outperformed other models (CT: C-index = 0.790, 95% CI: 0.76–0.82; MRI: C-index = 0.826, 95% CI: 0.79–0.86; US: C-index = 0.760, 95% CI: 0.65–0.87), except for CEUS-based combined models (C-index = 0.707, 95% CI: 0.44–0.97).

Conclusion

Radiomics holds the potential to predict HCC recurrence and demonstrates enhanced predictive value across various imaging modalities when integrated with clinical features. Nevertheless, further studies are needed to optimize the radiomics approach and validate the results in larger, multi-center cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助YTT采纳,获得10
1秒前
阔达书雪完成签到,获得积分10
2秒前
刘111发布了新的文献求助10
3秒前
寇博翔发布了新的文献求助10
6秒前
dm发布了新的文献求助10
7秒前
7秒前
7秒前
无极微光应助若花若草采纳,获得20
8秒前
8秒前
爆米花应助周一采纳,获得10
11秒前
ys1111xiao完成签到 ,获得积分10
11秒前
景严完成签到,获得积分10
11秒前
yinjs158发布了新的文献求助10
12秒前
12秒前
幽默孤兰发布了新的文献求助10
12秒前
2哇哇哇发布了新的文献求助10
12秒前
YTT发布了新的文献求助10
13秒前
moritzlaw完成签到,获得积分20
14秒前
汉堡包应助roro熊采纳,获得10
15秒前
科研小趴菜完成签到 ,获得积分10
16秒前
16秒前
野原x之助完成签到,获得积分10
17秒前
malo发布了新的文献求助10
17秒前
吴若雨完成签到 ,获得积分10
18秒前
daisyyy完成签到,获得积分10
21秒前
隐形静芙完成签到 ,获得积分10
21秒前
lh961129发布了新的文献求助10
21秒前
22秒前
23秒前
狂野的筝完成签到 ,获得积分10
23秒前
23秒前
jason发布了新的文献求助10
24秒前
简单小土豆完成签到 ,获得积分10
26秒前
张鑫发布了新的文献求助10
27秒前
28秒前
29秒前
malo完成签到,获得积分10
29秒前
解语花发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565531
求助须知:如何正确求助?哪些是违规求助? 4650613
关于积分的说明 14691991
捐赠科研通 4592552
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492065
关于科研通互助平台的介绍 1463281