Few-shot multi-view object classification via dual augmentation network

计算机科学 判别式 人工智能 可扩展性 稳健性(进化) 对象(语法) 机器学习 突出 模式识别(心理学) 生物化学 化学 数据库 基因
作者
Yaqian Zhou,Hao-Chun Lu,Tong Hao,Xuanya Li,An-An Liu
出处
期刊:Information Fusion [Elsevier]
卷期号:100: 101967-101967
标识
DOI:10.1016/j.inffus.2023.101967
摘要

Existing multi-view object classification algorithms usually rely on sufficient labeled multi-view objects, which substantially restricts their scalability to novel classes with few annotated training samples in real-world applications. Aiming to go beyond these limitations, we explore a novel yet challenging task, few-shot multi-view object classification (FS-MVOC), which expects the network to build its classification ability efficiently based on limited labeled multi-view objects. To this end, we design a dual augmentation network (DANet) to provide excellent performance for the under-explored FS-MVOC task. On the one hand, we employ an attention-guided multi-view representation augmentation (AMRA) strategy to help the model focus on salient features and suppress unnecessary ones on multiple views of multi-view objects, resulting in more discriminative multi-view representations. On the other hand, during the meta-training stage, we adopt the category prototype augmentation (CPA) strategy to improve the class-representativeness of each prototype and increase the inter-prototype difference by injecting Gaussian noise in the deep feature space. Extensive experiments on the benchmark datasets (Meta-ModelNet and Meta-ShapeNet) indicate the effectiveness and robustness of DANet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优美的剑身关注了科研通微信公众号
1秒前
Adrian发布了新的文献求助10
1秒前
Lwj发布了新的文献求助10
1秒前
1秒前
ding应助兰兰不懒采纳,获得10
2秒前
2秒前
qft完成签到,获得积分10
2秒前
3秒前
啊建发布了新的文献求助10
3秒前
李健应助第七个星球采纳,获得10
3秒前
一丁雨发布了新的文献求助10
3秒前
muzimu274发布了新的文献求助50
3秒前
小二郎应助炙热果汁采纳,获得10
4秒前
jxing1027完成签到,获得积分10
4秒前
4秒前
5秒前
mslln发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
客卿发布了新的文献求助10
5秒前
彭于晏应助火星上的闭月采纳,获得10
6秒前
高高大神发布了新的文献求助10
6秒前
万能图书馆应助qft采纳,获得10
6秒前
pluto应助xdd采纳,获得10
7秒前
hjygzv完成签到 ,获得积分10
7秒前
FF发布了新的文献求助10
8秒前
8秒前
8秒前
零柒发布了新的文献求助10
8秒前
无花果应助mocheer采纳,获得10
8秒前
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
杨沛发布了新的文献求助10
11秒前
11秒前
赵钱孙李完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851