亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inter-shaft Bearing Fault Diagnosis Based on Aero-engine System: A Benchmarking Dataset Study

方位(导航) 断层(地质) 振动 包络线(雷达) 加速度 流离失所(心理学) 转子(电动) 套管 计算机科学 信号(编程语言) 人工智能 工程类 模式识别(心理学) 声学 机械工程 地质学 电信 物理 地震学 经典力学 程序设计语言 心理治疗师 雷达 心理学
作者
Lei Hou,Haiming Yi,Yuhong Jin,Min Gui,Lianzheng Sui,Jianwei Zhang,Yushu Chen
标识
DOI:10.37965/jdmd.2023.314
摘要

In this paper, the aero-engine test with inter-shaft bearing fault is carried out, and a dataset is proposed for the first time based on the vibration signal of rotors and casings. First, a test rig based on a real aero-engine is established, driven by motors and equipped with a lubricating system. Then, the aero-engine is disassembled and assembled following the specification process, and the inter-shaft bearing with artificial fault is replaced. Next, the aero-engine test is conducted at 28 groups of high and low pressure speeds. Six measuring points are arranged, including two displacement sensors to test the displacement vibration signals of the low pressure rotor and four acceleration sensors to test the acceleration vibration signals of the casing. The test results are integrated into an inter-shaft bearing fault dataset. Finally, based on the dataset in this paper, frequency spectrum, envelope spectrum, CNN, LSTM and TST are used for fault diagnosis, and the results are compared with those of CWRU and XJTU datasets. The results show that the characteristic fault frequency cannot be found directly in the spectrum and envelope spectrum corresponding to this paper's dataset but in CWRU and XJTU datasets. Using CNN, LSTM and TST for fault diagnosis of the dataset in this paper, the accuracy is 83.13%, 85.41% and 71.07%, respectively, much lower than the diagnosis results of CWRU and XJTU datasets. It can be seen that the dataset in this paper is closer to the actual fault diagnosis situation and is a more challenging dataset. This dataset provides a new benchmark for the validation of fault diagnosis methods. Mendeley data: https://github.com/HouLeiHIT/HIT-dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研猫头鹰完成签到,获得积分10
8秒前
10秒前
pp完成签到,获得积分20
16秒前
Xiaoxiao应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Xiaoxiao应助科研通管家采纳,获得10
20秒前
47秒前
Billy发布了新的文献求助10
51秒前
Ava应助LeezZZZ采纳,获得10
1分钟前
曹年跃完成签到,获得积分10
1分钟前
犹豫的踏歌完成签到,获得积分10
1分钟前
善学以致用应助Elton采纳,获得10
1分钟前
1分钟前
2分钟前
Elton发布了新的文献求助10
2分钟前
LeezZZZ发布了新的文献求助10
2分钟前
么么完成签到 ,获得积分10
2分钟前
丘比特应助Elton采纳,获得10
2分钟前
852应助一口辰采纳,获得10
2分钟前
华仔应助俞思含采纳,获得10
2分钟前
2分钟前
Elton发布了新的文献求助10
2分钟前
2分钟前
ly发布了新的文献求助10
2分钟前
俞思含发布了新的文献求助10
2分钟前
2分钟前
NS完成签到,获得积分10
2分钟前
2分钟前
bcc666发布了新的文献求助10
2分钟前
星辰大海应助Elton采纳,获得10
2分钟前
充电宝应助bcc666采纳,获得10
3分钟前
3分钟前
Elton发布了新的文献求助10
3分钟前
3分钟前
凯当以慷发布了新的文献求助10
3分钟前
3分钟前
沉静的雁菡应助欣欣采纳,获得10
3分钟前
凯当以慷完成签到,获得积分10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555707
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390816
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803