Mg-doped LiMn0.8Fe0.2PO4/C nano-plate as a high-performance cathode material for lithium-ion batteries

锂(药物) 电化学 阴极 兴奋剂 材料科学 电导率 磷酸铁锂 尖晶石 电池(电) 磷酸铁 化学工程 纳米技术 化学 电极 磷酸盐 冶金 光电子学 物理化学 医学 有机化学 内分泌学 功率(物理) 工程类 物理 量子力学
作者
Hui Hu,Heng Li,Lei Yu,Jiali Liu,Xiaolin Liu,Ruijuan Wang,Jiao Peng,Xianyou Wang
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:73: 109006-109006 被引量:23
标识
DOI:10.1016/j.est.2023.109006
摘要

Lithium-ion battery cathode materials with the high-voltage platform have turned into research highlights. Manganese-based olivine material LiMn0.8Fe0.2PO4 (LMFP), which is synthesized by cheap and environmentally friendly raw materials as precursors, has received high attention due to the higher energy density than commercial lithium iron phosphate products. However, similar to the low conductivity of olivine-structured lithium iron phosphate (LiFePO4), the defect of low conductivity of LMFP has also become the obstacle of LMFP further application. To improve the kinetic properties of LMFP, Mg-doped LMFP/C nano-plate are forearmed by a straightforward and controllable solvothermal approach. The results demonstrate that Mg2+ can be validly doped into the sample, and can partially displace Li+ position in LMFP. It has been found that the Mg-doped LMFP/C material Li0.97Mg0.015Mn0.8Fe0.2PO4 (LMFP-2) presents excellent electrochemical performances and more sustainable application prospect in the fields of electric vehicle and grid energy storage batteries, which can provide a high initial discharge capacity of 156.9 mAh g−1 at 0.1C. In addition, even at high rates of 10 and 20C, the discharge capacity of LMFP-2 can still maintain 120.7 and 104.8 mAh g−1, where the discharge process can be completed in only 255 and 110 s. These results indicate that the introduction of Mg2+ at Li+ site can validly upgradation the electron conductivity and Li+ mobility in the material, thus promoting the electrochemical performances. The rapid discharge ability and cyclic performance of the as-prepared materials make them have great application potential in high-performance lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧伤的绍辉完成签到 ,获得积分10
1秒前
rita_sun1969完成签到,获得积分10
3秒前
可爱的函函应助凉冰采纳,获得10
4秒前
炼丹炉完成签到,获得积分10
4秒前
Sophia完成签到,获得积分10
4秒前
娇娇大王完成签到,获得积分10
5秒前
marc107完成签到,获得积分10
9秒前
10秒前
cc完成签到 ,获得积分10
10秒前
Biofly526完成签到,获得积分10
11秒前
YY完成签到,获得积分10
11秒前
BFUstbc完成签到,获得积分10
12秒前
善学以致用应助Mason采纳,获得10
15秒前
lee完成签到,获得积分10
19秒前
噗愣噗愣地刚发芽完成签到 ,获得积分10
23秒前
23秒前
龙虾发票完成签到,获得积分10
27秒前
无花果应助君子兰采纳,获得10
27秒前
zhao完成签到,获得积分10
28秒前
wBw完成签到,获得积分10
28秒前
科研通AI5应助郑恩熙采纳,获得10
30秒前
小伊001完成签到,获得积分10
33秒前
ntrip完成签到,获得积分10
35秒前
39秒前
43秒前
wisher完成签到 ,获得积分10
44秒前
我爱学习完成签到 ,获得积分10
45秒前
47秒前
郑恩熙发布了新的文献求助10
49秒前
华无剑发布了新的文献求助10
51秒前
杨杨完成签到 ,获得积分10
51秒前
十七完成签到 ,获得积分10
53秒前
Singularity应助科研通管家采纳,获得10
54秒前
大模型应助科研通管家采纳,获得10
54秒前
ccc应助科研通管家采纳,获得10
54秒前
麦当当应助科研通管家采纳,获得10
54秒前
凤迎雪飘应助科研通管家采纳,获得10
54秒前
热心路人应助科研通管家采纳,获得10
54秒前
54秒前
YingyingFan应助科研通管家采纳,获得10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674546
求助须知:如何正确求助?哪些是违规求助? 3229838
关于积分的说明 9787162
捐赠科研通 2940432
什么是DOI,文献DOI怎么找? 1611923
邀请新用户注册赠送积分活动 761063
科研通“疑难数据库(出版商)”最低求助积分说明 736488