已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatio-Temporal Pyramid Networks for Traffic Forecasting

计算机科学 棱锥(几何) 离群值 图形 数据挖掘 流量(计算机网络) 人工智能 理论计算机科学 计算机安全 光学 物理
作者
Jia Hu,Chu Wang,Xianghong Lin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 339-354 被引量:1
标识
DOI:10.1007/978-3-031-43412-9_20
摘要

Traffic flow forecasting is an important part of smart city construction. Accurate traffic flow forecasting helps traffic management agencies to make timely adjustments, thus improving pedestrian travel efficiency and road utilization. However, this work is challenging due to the dynamic stochastic factors affecting the variation of traffic data and the spatially hidden behavior. Existing approaches generally use attention mechanism or graph neural networks to model correlation in temporal and spatial terms, and despite some progress in performance, they still ignore a number of practical situations: (1) Anomalous data due to traffic accidents or traffic congestion can affect the accuracy of modeling in the current moment and further create potential optimization problems for model training. (2) According to the directedness of the road, the hiding behavior between nodes should also be unidirectional and dynamic. In this paper, we propose a dynamic graph network with a pyramid structure, named PYNet, and use it for traffic flow forecasting tasks. Specifically, first we propose the Pyramid Constructor for transforming multivariate time series into a pyramid network with a multilevel structure, where the higher the level, the larger the range of time scales represented. Second, we perform Trend-Aware Attention top-down in the pyramid network, which gradually enables the lower-level time series to learn their long-term dependence in multiples, and effectively reduces the impact of outliers. Furthermore, to fully capture the hidden behavior in the spatial dimension, we learn an adaptive unidirectional graph and perform forward and backward diffusion convolution on the graph. Experimental results on two types of datasets show that PYNet outperforms the state-of-the-art baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的语琴关注了科研通微信公众号
4秒前
4秒前
5秒前
6秒前
6秒前
个性冰海发布了新的文献求助10
10秒前
10秒前
蓝色的鱼发布了新的文献求助10
11秒前
dd发布了新的文献求助10
11秒前
jml完成签到,获得积分10
13秒前
cong完成签到 ,获得积分10
15秒前
虚幻笑晴发布了新的文献求助10
18秒前
LMX完成签到 ,获得积分10
18秒前
个性冰海完成签到,获得积分20
20秒前
01关闭了01文献求助
21秒前
牛初辰完成签到 ,获得积分10
24秒前
26秒前
蓝色的鱼完成签到,获得积分10
27秒前
高高亦竹完成签到,获得积分10
28秒前
32秒前
虚幻笑晴发布了新的文献求助10
33秒前
小雨点Logan完成签到,获得积分10
33秒前
谦让的含海应助dd采纳,获得10
36秒前
哲别发布了新的文献求助10
37秒前
41秒前
默默善愁发布了新的文献求助10
45秒前
顾矜应助默默善愁采纳,获得10
51秒前
54秒前
闪闪的梦槐完成签到 ,获得积分10
55秒前
xiaoya927217发布了新的文献求助10
59秒前
59秒前
59秒前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
myg123完成签到 ,获得积分10
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
刘123完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524