已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatio-Temporal Pyramid Networks for Traffic Forecasting

计算机科学 棱锥(几何) 离群值 图形 数据挖掘 流量(计算机网络) 人工智能 理论计算机科学 计算机安全 光学 物理
作者
Jia Hu,Chu Wang,Xianghong Lin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 339-354 被引量:1
标识
DOI:10.1007/978-3-031-43412-9_20
摘要

Traffic flow forecasting is an important part of smart city construction. Accurate traffic flow forecasting helps traffic management agencies to make timely adjustments, thus improving pedestrian travel efficiency and road utilization. However, this work is challenging due to the dynamic stochastic factors affecting the variation of traffic data and the spatially hidden behavior. Existing approaches generally use attention mechanism or graph neural networks to model correlation in temporal and spatial terms, and despite some progress in performance, they still ignore a number of practical situations: (1) Anomalous data due to traffic accidents or traffic congestion can affect the accuracy of modeling in the current moment and further create potential optimization problems for model training. (2) According to the directedness of the road, the hiding behavior between nodes should also be unidirectional and dynamic. In this paper, we propose a dynamic graph network with a pyramid structure, named PYNet, and use it for traffic flow forecasting tasks. Specifically, first we propose the Pyramid Constructor for transforming multivariate time series into a pyramid network with a multilevel structure, where the higher the level, the larger the range of time scales represented. Second, we perform Trend-Aware Attention top-down in the pyramid network, which gradually enables the lower-level time series to learn their long-term dependence in multiples, and effectively reduces the impact of outliers. Furthermore, to fully capture the hidden behavior in the spatial dimension, we learn an adaptive unidirectional graph and perform forward and backward diffusion convolution on the graph. Experimental results on two types of datasets show that PYNet outperforms the state-of-the-art baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽的短靴完成签到,获得积分10
刚刚
所所应助吉良吉影采纳,获得10
2秒前
samantha817完成签到,获得积分10
2秒前
JamesPei应助长情火龙果采纳,获得10
3秒前
4秒前
5秒前
唠叨的无敌完成签到 ,获得积分20
5秒前
氢氧化钠Li完成签到,获得积分10
6秒前
朱庆柯发布了新的文献求助10
9秒前
10秒前
zsc发布了新的文献求助20
11秒前
11秒前
szj发布了新的文献求助10
11秒前
iidae完成签到,获得积分10
12秒前
14秒前
15秒前
肖恩发布了新的文献求助10
16秒前
17秒前
欧力蟹关注了科研通微信公众号
17秒前
17秒前
18秒前
18秒前
研友_VZG7GZ应助包容的绿蕊采纳,获得10
18秒前
19秒前
尹静涵完成签到 ,获得积分10
20秒前
20秒前
吉良吉影发布了新的文献求助10
21秒前
nitsuj发布了新的文献求助10
22秒前
23秒前
24秒前
木木发布了新的文献求助10
24秒前
南巷晚风发布了新的文献求助10
25秒前
moderater完成签到,获得积分10
27秒前
27秒前
28秒前
29秒前
33秒前
34秒前
34秒前
微笑的忆枫完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422