已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatio-Temporal Pyramid Networks for Traffic Forecasting

计算机科学 棱锥(几何) 离群值 图形 数据挖掘 流量(计算机网络) 人工智能 理论计算机科学 计算机安全 光学 物理
作者
Jia Hu,Chu Wang,Xianghong Lin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 339-354 被引量:1
标识
DOI:10.1007/978-3-031-43412-9_20
摘要

Traffic flow forecasting is an important part of smart city construction. Accurate traffic flow forecasting helps traffic management agencies to make timely adjustments, thus improving pedestrian travel efficiency and road utilization. However, this work is challenging due to the dynamic stochastic factors affecting the variation of traffic data and the spatially hidden behavior. Existing approaches generally use attention mechanism or graph neural networks to model correlation in temporal and spatial terms, and despite some progress in performance, they still ignore a number of practical situations: (1) Anomalous data due to traffic accidents or traffic congestion can affect the accuracy of modeling in the current moment and further create potential optimization problems for model training. (2) According to the directedness of the road, the hiding behavior between nodes should also be unidirectional and dynamic. In this paper, we propose a dynamic graph network with a pyramid structure, named PYNet, and use it for traffic flow forecasting tasks. Specifically, first we propose the Pyramid Constructor for transforming multivariate time series into a pyramid network with a multilevel structure, where the higher the level, the larger the range of time scales represented. Second, we perform Trend-Aware Attention top-down in the pyramid network, which gradually enables the lower-level time series to learn their long-term dependence in multiples, and effectively reduces the impact of outliers. Furthermore, to fully capture the hidden behavior in the spatial dimension, we learn an adaptive unidirectional graph and perform forward and backward diffusion convolution on the graph. Experimental results on two types of datasets show that PYNet outperforms the state-of-the-art baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尚奇完成签到,获得积分10
5秒前
Zidawhy发布了新的文献求助30
6秒前
6秒前
尊敬雪萍发布了新的文献求助10
11秒前
Nancy0818完成签到 ,获得积分10
12秒前
尊敬雪萍完成签到,获得积分10
16秒前
phoenix完成签到,获得积分0
28秒前
折光完成签到,获得积分10
28秒前
英勇兔子完成签到 ,获得积分10
32秒前
33秒前
丘比特应助与山采纳,获得10
40秒前
郗妫完成签到,获得积分10
42秒前
Gemi发布了新的文献求助10
42秒前
moiumuio完成签到,获得积分10
43秒前
46秒前
汉堡包应助sleet采纳,获得10
47秒前
CHSLN完成签到 ,获得积分10
49秒前
无心发布了新的文献求助10
51秒前
pp777完成签到 ,获得积分10
55秒前
海伯利安应助科研通管家采纳,获得10
55秒前
Akim应助科研通管家采纳,获得10
55秒前
土豪的新儿完成签到 ,获得积分10
58秒前
无心完成签到,获得积分20
58秒前
大模型应助rff666采纳,获得10
58秒前
1分钟前
Joseph_sss完成签到 ,获得积分10
1分钟前
BBbang440完成签到,获得积分10
1分钟前
rff666发布了新的文献求助10
1分钟前
1分钟前
鲨鱼辣椒完成签到 ,获得积分10
1分钟前
神勇夏寒发布了新的文献求助10
1分钟前
1分钟前
babren发布了新的文献求助10
1分钟前
1分钟前
dolabmu完成签到 ,获得积分10
1分钟前
搜集达人应助周游采纳,获得10
1分钟前
rff666完成签到,获得积分10
1分钟前
俊逸如风完成签到 ,获得积分10
1分钟前
Cosmosurfer完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959971
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128425
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042