强化学习
人工智能
机器学习
过度自信效应
皮肤癌
钢筋
计算机科学
置信区间
基底细胞癌
癌症
医学
统计
基底细胞
数学
心理学
内科学
社会心理学
作者
Catarina Barata,Veronica Rotemberg,Noel Codella,Philipp Tschandl,Claus Rinner,Bengü Nisa Akay,Zoé Apalla,Giuseppe Argenziano,Allan C. Halpern,Aimilios Lallas,Caterina Longo,Josep Malvehy,Susana Puig,Cliff Rosendahl,H. Peter Soyer,Iris Zalaudek,Harald Kittler
出处
期刊:Nature Medicine
[Springer Nature]
日期:2023-07-27
卷期号:29 (8): 1941-1946
被引量:33
标识
DOI:10.1038/s41591-023-02475-5
摘要
We investigated whether human preferences hold the potential to improve diagnostic artificial intelligence (AI)-based decision support using skin cancer diagnosis as a use case. We utilized nonuniform rewards and penalties based on expert-generated tables, balancing the benefits and harms of various diagnostic errors, which were applied using reinforcement learning. Compared with supervised learning, the reinforcement learning model improved the sensitivity for melanoma from 61.4% to 79.5% (95% confidence interval (CI): 73.5-85.6%) and for basal cell carcinoma from 79.4% to 87.1% (95% CI: 80.3-93.9%). AI overconfidence was also reduced while simultaneously maintaining accuracy. Reinforcement learning increased the rate of correct diagnoses made by dermatologists by 12.0% (95% CI: 8.8-15.1%) and improved the rate of optimal management decisions from 57.4% to 65.3% (95% CI: 61.7-68.9%). We further demonstrated that the reward-adjusted reinforcement learning model and a threshold-based model outperformed naïve supervised learning in various clinical scenarios. Our findings suggest the potential for incorporating human preferences into image-based diagnostic algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI