Near-Infrared spectroscopy combined with machine learning methods for distinguishment of the storage years of rice

超参数优化 超参数 计算机科学 机器学习 人工智能 随机森林 人工神经网络 支持向量机 模式识别(心理学) 数据挖掘
作者
Fuping Huang,Yimei Peng,Linghui Li,Shitong Ye,Shaoyong Hong
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:133: 104835-104835 被引量:7
标识
DOI:10.1016/j.infrared.2023.104835
摘要

Rice is one of the most important food crops that provide essential nutrients, micronutrients and daily energy for humans. The freshness of rice determines the quality and nutrition supply property, but the freshness decreases along with the storage time. A simple, nondestructive and rapid detection technology is needed to estimate the time of storage rice as for a fast evaluation of the rice quality. To accomplish this objective, near-infrared spectroscopy (NIRS) is employed in combination with three machine learning methods, including least square support vector machine (LSSVM), random forest (RF) and principal component-neural network (PC-NN). With specific design on grid search of the relevant parameters, the LSSVM model optimally performed classification with the highest accuracy of 95.7% in the distinguishment of three labeled storage years, the RF model and PC-NN models have close accuracies in model training and optimization processes. In comparison to the PLS method, which is the typical chemometric method in NIRS data analysis, the three presented machine learning methods all perform excellent over the PLS model for model training and for model testing. Especially the RF and PC-NN model were optimized by hyperparameter training, to obtain 90% of testing accuracy and reduced the error differences to ∼5.0% between model training and testing. This study indicated the potential of NIRS in combination with machine learning methods as practical chemometric tools for discrimination of the rice storage freshness by distinguishing their storage years. The design of adaptive tuning on hyperparameters provide a valuable approach to improve the model prediction abilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助认真读文献采纳,获得10
1秒前
1秒前
Jiaxixi发布了新的文献求助10
1秒前
天天快乐应助初七123采纳,获得10
1秒前
1秒前
cgy应助典雅若采纳,获得30
2秒前
2秒前
jing发布了新的文献求助30
2秒前
2秒前
清茶韵心发布了新的文献求助10
3秒前
3秒前
Ava应助悦耳以旋采纳,获得10
4秒前
zxm完成签到,获得积分10
4秒前
挖掘机完成签到,获得积分10
4秒前
鱼粥很好发布了新的文献求助10
4秒前
深蓝发布了新的文献求助10
4秒前
penhuodragon关注了科研通微信公众号
5秒前
Akim应助加油女王采纳,获得10
5秒前
ll完成签到 ,获得积分20
5秒前
6秒前
htht完成签到,获得积分20
6秒前
slgzhangtao完成签到,获得积分10
6秒前
帅玉玉发布了新的文献求助10
6秒前
满意花生发布了新的文献求助10
7秒前
www123qe发布了新的文献求助10
8秒前
酷波er应助灵巧汉堡采纳,获得10
8秒前
在下想发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助汤圆呢醒醒采纳,获得30
9秒前
10秒前
10秒前
10秒前
清爽的乐曲完成签到,获得积分10
10秒前
独自人生完成签到,获得积分10
11秒前
科研通AI6应助积极的夏天采纳,获得10
12秒前
Silieze完成签到,获得积分10
12秒前
可爱的函函应助112采纳,获得10
13秒前
13秒前
核动力驴发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997