已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Near-Infrared spectroscopy combined with machine learning methods for distinguishment of the storage years of rice

超参数优化 超参数 计算机科学 机器学习 人工智能 随机森林 人工神经网络 支持向量机 模式识别(心理学) 数据挖掘
作者
Fuping Huang,Yimei Peng,Linghui Li,Shitong Ye,Shaoyong Hong
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:133: 104835-104835 被引量:5
标识
DOI:10.1016/j.infrared.2023.104835
摘要

Rice is one of the most important food crops that provide essential nutrients, micronutrients and daily energy for humans. The freshness of rice determines the quality and nutrition supply property, but the freshness decreases along with the storage time. A simple, nondestructive and rapid detection technology is needed to estimate the time of storage rice as for a fast evaluation of the rice quality. To accomplish this objective, near-infrared spectroscopy (NIRS) is employed in combination with three machine learning methods, including least square support vector machine (LSSVM), random forest (RF) and principal component-neural network (PC-NN). With specific design on grid search of the relevant parameters, the LSSVM model optimally performed classification with the highest accuracy of 95.7% in the distinguishment of three labeled storage years, the RF model and PC-NN models have close accuracies in model training and optimization processes. In comparison to the PLS method, which is the typical chemometric method in NIRS data analysis, the three presented machine learning methods all perform excellent over the PLS model for model training and for model testing. Especially the RF and PC-NN model were optimized by hyperparameter training, to obtain 90% of testing accuracy and reduced the error differences to ∼5.0% between model training and testing. This study indicated the potential of NIRS in combination with machine learning methods as practical chemometric tools for discrimination of the rice storage freshness by distinguishing their storage years. The design of adaptive tuning on hyperparameters provide a valuable approach to improve the model prediction abilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个木发布了新的文献求助10
1秒前
1秒前
2秒前
iNk应助air233采纳,获得10
3秒前
luminous完成签到,获得积分10
4秒前
tianshicanyi发布了新的文献求助10
6秒前
光亮白羊完成签到 ,获得积分10
7秒前
脑洞疼应助Antares采纳,获得10
9秒前
9秒前
陶醉的绮菱完成签到,获得积分10
12秒前
13秒前
Cwx2020完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
杰jj完成签到 ,获得积分10
18秒前
小黄发布了新的文献求助30
20秒前
zshjwk18完成签到,获得积分10
21秒前
21秒前
Dollar完成签到 ,获得积分0
22秒前
顾矜应助科研通管家采纳,获得10
23秒前
HEIKU应助科研通管家采纳,获得10
23秒前
HEIKU应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
HEIKU应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
23秒前
华仔应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得30
23秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
24秒前
Steven发布了新的文献求助10
24秒前
吴咪完成签到,获得积分10
27秒前
李力完成签到 ,获得积分10
27秒前
28秒前
周子航发布了新的文献求助10
33秒前
33秒前
s654231完成签到,获得积分10
36秒前
俭朴听南发布了新的文献求助10
43秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125790
求助须知:如何正确求助?哪些是违规求助? 2776133
关于积分的说明 7729211
捐赠科研通 2431530
什么是DOI,文献DOI怎么找? 1292140
科研通“疑难数据库(出版商)”最低求助积分说明 622407
版权声明 600380