清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Near-Infrared spectroscopy combined with machine learning methods for distinguishment of the storage years of rice

超参数优化 超参数 计算机科学 机器学习 人工智能 随机森林 人工神经网络 支持向量机 模式识别(心理学) 数据挖掘
作者
Fuping Huang,Yimei Peng,Linghui Li,Shitong Ye,Shaoyong Hong
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:133: 104835-104835 被引量:7
标识
DOI:10.1016/j.infrared.2023.104835
摘要

Rice is one of the most important food crops that provide essential nutrients, micronutrients and daily energy for humans. The freshness of rice determines the quality and nutrition supply property, but the freshness decreases along with the storage time. A simple, nondestructive and rapid detection technology is needed to estimate the time of storage rice as for a fast evaluation of the rice quality. To accomplish this objective, near-infrared spectroscopy (NIRS) is employed in combination with three machine learning methods, including least square support vector machine (LSSVM), random forest (RF) and principal component-neural network (PC-NN). With specific design on grid search of the relevant parameters, the LSSVM model optimally performed classification with the highest accuracy of 95.7% in the distinguishment of three labeled storage years, the RF model and PC-NN models have close accuracies in model training and optimization processes. In comparison to the PLS method, which is the typical chemometric method in NIRS data analysis, the three presented machine learning methods all perform excellent over the PLS model for model training and for model testing. Especially the RF and PC-NN model were optimized by hyperparameter training, to obtain 90% of testing accuracy and reduced the error differences to ∼5.0% between model training and testing. This study indicated the potential of NIRS in combination with machine learning methods as practical chemometric tools for discrimination of the rice storage freshness by distinguishing their storage years. The design of adaptive tuning on hyperparameters provide a valuable approach to improve the model prediction abilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
轩辕中蓝完成签到 ,获得积分10
10秒前
张凡完成签到 ,获得积分10
10秒前
深情安青应助科研通管家采纳,获得10
14秒前
婉莹完成签到 ,获得积分0
18秒前
朵朵完成签到,获得积分10
25秒前
ggg完成签到 ,获得积分10
30秒前
myth完成签到,获得积分10
44秒前
LuciusHe完成签到,获得积分10
51秒前
Tong完成签到,获得积分0
1分钟前
乐观的星月完成签到 ,获得积分10
1分钟前
落落完成签到 ,获得积分0
1分钟前
momoni完成签到 ,获得积分10
1分钟前
1分钟前
rpe发布了新的文献求助10
1分钟前
Lyanph完成签到 ,获得积分10
1分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
CC发布了新的文献求助10
2分钟前
Dreamhappy完成签到,获得积分10
2分钟前
chichenglin完成签到 ,获得积分0
2分钟前
2分钟前
gszy1975发布了新的文献求助10
2分钟前
凤里完成签到 ,获得积分10
3分钟前
fogsea完成签到,获得积分0
3分钟前
yao完成签到 ,获得积分10
3分钟前
韩寒完成签到 ,获得积分10
3分钟前
王佳豪完成签到,获得积分10
3分钟前
路路完成签到 ,获得积分10
4分钟前
4分钟前
曹国庆完成签到 ,获得积分10
4分钟前
StonesKing完成签到,获得积分20
4分钟前
tmobiusx完成签到,获得积分10
4分钟前
xun完成签到,获得积分10
4分钟前
zzgpku完成签到,获得积分0
5分钟前
5分钟前
搜集达人应助ceeray23采纳,获得20
5分钟前
CC发布了新的文献求助10
5分钟前
愤怒的小鸟完成签到,获得积分10
5分钟前
清脆钧完成签到,获得积分20
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990629
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256552
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234