A Longitudinal MRI-Based Artificial Intelligence System to Predict Pathological Complete Response After Neoadjuvant Therapy in Rectal Cancer: A Multicenter Validation Study

医学 新辅助治疗 结直肠癌 外科肿瘤学 完全响应 病态的 结直肠外科 放射科 肿瘤科 内科学 癌症 化疗 腹部外科 乳腺癌
作者
Jia Ke,Cheng Jin,Jinghua Tang,Haimei Cao,Songbing He,Peirong Ding,Xiaofeng Jiang,Hengyu Zhao,Wuteng Cao,Xiaochun Meng,Feng Gao,Ping Lan,Ruijiang Li,Xiaojian Wu
出处
期刊:Diseases of The Colon & Rectum [Lippincott Williams & Wilkins]
被引量:7
标识
DOI:10.1097/dcr.0000000000002931
摘要

BACKGROUND: Accurate prediction of response to neoadjuvant chemoradiotherapy is critical for subsequent treatment decisions for patients with locally advanced rectal cancer. OBJECTIVE: To develop and validate a deep learning model that based on the comparison of paired magnetic resonance imaging before and after neoadjuvant chemoradiotherapy to predict pathological complete response. DESIGN: By capturing the changes from magnetic resonance images before and after neoadjuvant chemoradiotherapy in 638 patients, we trained a multitask deep learning model for response prediction (DeepRP-RC) that also allowed simultaneous segmentation. Its performance was independently tested in an internal and three external validation sets, and its prognostic value was also evaluated. SETTINGS: Multicenter study. PATIENTS: We retrospectively rerolled 1201 patients diagnosed with locally advanced rectal cancer and undergoing neoadjuvant chemoradiotherapy prior to total mesorectal excision. They were from four hospitals in China between January 2013 and December 2020. MAIN OUTCOME MEASURES: The main outcomes were accuracy of predicting pathological complete response, measured as the area under receiver operating curve for the training and validation data sets. RESULTS: DeepRP-RC achieved high performance in predicting pathological complete response after neoadjuvant chemoradiotherapy, with area under curve values of 0.969 (0.942-0.996), 0.946 (0.915-0.977), 0.943 (0.888-0.998), and 0.919 (0.840-0.997) for the internal and 3 external validation sets, respectively. DeepRP-RC performed similarly well in the subgroups defined by receipt of radiotherapy, tumor location, T/N stages before and after neoadjuvant chemoradiotherapy, and age. Compared with experienced radiologists, the model showed substantially higher performance in pathological complete response prediction. The model was also highly accurate in identifying the patients with poor response. Further, the model was significantly associated with disease-free survival independent of clinicopathologic variables. LIMITATIONS: This study was limited by retrospective design and absence of multi-ethnic data. CONCLUSIONS: DeepRP-RC could serve as an accurate preoperative tool for pathological complete response prediction in rectal cancer after neoadjuvant chemoradiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MI发布了新的文献求助10
刚刚
刚刚
安静夏青完成签到,获得积分10
刚刚
1秒前
英俊的铭应助清爽的映萱采纳,获得10
1秒前
斯文败类应助kobeycc采纳,获得10
2秒前
2秒前
GD完成签到,获得积分10
3秒前
柯柯完成签到,获得积分10
3秒前
古藤完成签到,获得积分10
4秒前
4秒前
高高完成签到 ,获得积分10
4秒前
华姝发布了新的文献求助100
4秒前
从容黎昕完成签到,获得积分20
5秒前
雅婷发布了新的文献求助10
5秒前
5秒前
小马甲应助wei采纳,获得10
5秒前
雪儿完成签到 ,获得积分10
5秒前
兴奋的凝丝完成签到,获得积分10
6秒前
星曳完成签到,获得积分10
6秒前
迟大猫应助Arui采纳,获得10
6秒前
赫连立果完成签到,获得积分10
6秒前
研友_VZG7GZ应助123采纳,获得10
6秒前
lzschaoshen发布了新的文献求助10
7秒前
小二郎应助实验室的亡灵采纳,获得10
7秒前
大胆的翠绿完成签到,获得积分10
7秒前
LmyHusband完成签到,获得积分10
7秒前
QianchengZhao完成签到,获得积分10
7秒前
伶俐悟空完成签到,获得积分10
7秒前
7秒前
123完成签到,获得积分20
7秒前
7秒前
CodeCraft应助MI采纳,获得10
8秒前
愤怒的稀完成签到,获得积分10
8秒前
Dawn完成签到,获得积分10
8秒前
8秒前
大白天的飙摩的完成签到,获得积分10
9秒前
Scidog完成签到,获得积分10
9秒前
Danny发布了新的文献求助10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661640
求助须知:如何正确求助?哪些是违规求助? 3222598
关于积分的说明 9746930
捐赠科研通 2932253
什么是DOI,文献DOI怎么找? 1605569
邀请新用户注册赠送积分活动 757979
科研通“疑难数据库(出版商)”最低求助积分说明 734584