亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interactive Dual Network With Adaptive Density Map for Automatic Cell Counting

计算机科学 基本事实 人工智能 发电机(电路理论) 深度学习 过程(计算) 机器学习 数据挖掘 功率(物理) 物理 量子力学 操作系统
作者
Rui Liu,Yudi Zhu,Cong Wu,Hao Guo,Wei Dai,Tianyi Wu,Min Wang,Wen J. Li,Jun Liu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6731-6743 被引量:2
标识
DOI:10.1109/tase.2023.3329973
摘要

Cell counting is an essential step in a wide variety of biomedical applications, such as blood examination, semen assessment, and cancer diagnosis. However, microscopic cell counting is conventionally labor-intensive and error-prone for experts, and most of the existing automatic approaches are confined to a specific image type. To address these challenges, we propose a new interactive dual-network framework for automatic and generic cell counting. In this framework, one deep learning model (counter) is trained to regress a density map from a given microscope image. The number of cells in that image can be estimated by performing integration over the regressed density map. Another network (ground truth generator) is employed to dynamically generate suitable ground truth based on the cell samples and the dot annotations to serve as the supervision for training the counter. The interactive process to obtain the optimal model is achieved by jointly training the counter and ground truth generator iteratively. Moreover, we design a hierarchical multi-scale attention-based architecture to act as the counter in the proposed framework. This architecture is crafted to efficiently and effectively process multi-level features, enabling accurate regression of high-quality density maps. Evaluation experiments on three public cell counting datasets demonstrate the superiority of our method. Note to Practitioners —This paper is motivated by the need for advanced healthcare in the deep learning era. As a routine assessment procedure in healthcare settings, cell counting usually suffers from poor accuracy and inefficiency. We provide a solution to ameliorate the situation by developing a deep learning-based framework for automatic cell counting. After being trained in an end-to-end manner, the dual-network system is able to estimate the number of cells from the given microscopic images more accurately than existing methods. Additionally, this method is robust in various scenarios, such as calculating cell populations in suspension and cells in tissues. In the future, the presented pipeline has the potential to be implemented by biomedical practitioners who are non-expert in programming via wrapping it into a graphical user interface.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乌兰发布了新的文献求助10
18秒前
39秒前
42秒前
李健的小迷弟应助祝人达采纳,获得10
43秒前
pegasus0802完成签到,获得积分10
45秒前
科研通AI2S应助北纬采纳,获得30
52秒前
李健应助科研通管家采纳,获得30
54秒前
英俊的铭应助科研通管家采纳,获得10
54秒前
上官若男应助科研通管家采纳,获得10
54秒前
1分钟前
1分钟前
1分钟前
zokor完成签到 ,获得积分10
1分钟前
任我行发布了新的文献求助10
1分钟前
1分钟前
2分钟前
Babyblue发布了新的文献求助10
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
忐忑的黑猫应助Babyblue采纳,获得10
2分钟前
忐忑的黑猫应助Babyblue采纳,获得10
2分钟前
JamesPei应助Babyblue采纳,获得10
2分钟前
搜集达人应助TONG97采纳,获得10
2分钟前
DarwinZC发布了新的文献求助10
2分钟前
2分钟前
Babyblue完成签到,获得积分20
2分钟前
NexusExplorer应助DarwinZC采纳,获得10
2分钟前
2分钟前
pp‘s完成签到 ,获得积分10
2分钟前
儒雅南风完成签到 ,获得积分10
2分钟前
2分钟前
汤万天完成签到,获得积分10
2分钟前
TONG97发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
迷路的问儿应助yi一一采纳,获得30
3分钟前
TONG97完成签到,获得积分10
3分钟前
oscar完成签到,获得积分10
3分钟前
shiny发布了新的文献求助10
3分钟前
luna发布了新的文献求助10
3分钟前
wen完成签到 ,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466798
求助须知:如何正确求助?哪些是违规求助? 3059583
关于积分的说明 9067131
捐赠科研通 2750043
什么是DOI,文献DOI怎么找? 1508952
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896