FGAHOI: Fine-Grained Anchors for Human-Object Interaction Detection

计算机科学 人工智能 目标检测 合并(版本控制) 任务(项目管理) 对象(语法) 机器学习 模式识别(心理学) 情报检索 经济 管理
作者
Shuailei Ma,Yuefeng Wang,Shanze Wang,Ying Wei
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (4): 2415-2429 被引量:19
标识
DOI:10.1109/tpami.2023.3331738
摘要

Human-Object Interaction (HOI), as an important problem in computer vision, requires locating the human-object pair and identifying the interactive relationships between them. The HOI instance has a greater span in spatial, scale, and task than the individual object instance, making its detection more susceptible to noisy backgrounds. To alleviate the disturbance of noisy backgrounds on HOI detection, it is necessary to consider the input image information to generate fine-grained anchors which are then leveraged to guide the detection of HOI instances. However, it has the following challenges. i) how to extract pivotal features from the images with complex background information is still an open question. ii) how to semantically align the extracted features and query embeddings is also a difficult issue. In this paper, a novel end-to-end transformer-based framework (FGAHOI) is proposed to alleviate the above problems. FGAHOI comprises three dedicated components namely, multi-scale sampling (MSS), hierarchical spatial-aware merging (HSAM) and task-aware merging mechanism (TAM). MSS extracts features of humans, objects and interaction areas from noisy backgrounds for HOI instances of various scales. HSAM and TAM semantically align and merge the extracted features and query embeddings in the hierarchical spatial and task perspectives in turn. In the meanwhile, a novel training strategy Stage-wise Training Strategy is designed to reduce the training pressure caused by overly complex tasks done by FGAHOI. In addition, we propose two ways to measure the difficulty of HOI detection and a novel dataset, i.e., HOI-SDC for the two challenges (Uneven Distributed Area in Human-Object Pairs and Long Distance Visual Modeling of Human-Object Pairs) of HOI instances detection. Experiments are conducted on three benchmarks: HICO-DET, HOI-SDC and V-COCO. Our model outperforms the state-of-the-art HOI detection methods, and the extensive ablations reveal the merits of our proposed contribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
qiu发布了新的文献求助10
2秒前
2秒前
ou完成签到,获得积分10
2秒前
4秒前
AKKKK发布了新的文献求助10
4秒前
小青虫发布了新的文献求助10
4秒前
caojiarong完成签到,获得积分10
5秒前
5秒前
5秒前
114514发布了新的文献求助10
5秒前
1+1发布了新的文献求助10
6秒前
打打应助zhang采纳,获得10
6秒前
8秒前
共享精神应助kylin采纳,获得10
8秒前
跳跳妈妈发布了新的文献求助10
8秒前
zhaoxuelian发布了新的文献求助10
8秒前
李知恩完成签到,获得积分10
8秒前
9秒前
10秒前
酷波er应助哈哈哈采纳,获得30
11秒前
ll发布了新的文献求助10
11秒前
11秒前
12秒前
qiu完成签到,获得积分20
12秒前
风轻云淡发布了新的文献求助10
13秒前
14秒前
David发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
深情安青应助yabghaobo采纳,获得10
15秒前
lieditongxu发布了新的文献求助10
15秒前
CodeCraft应助AKKKK采纳,获得10
15秒前
16秒前
善学以致用应助beard采纳,获得10
16秒前
17秒前
sssa发布了新的文献求助30
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400