已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combination of UAV and deep learning to estimate wheat yield at ripening stage: The potential of phenotypic features

随机森林 产量(工程) 回归 回归分析 成熟 天蓬 人工智能 分割 线性回归 支持向量机 数学 统计 计算机科学 生物 园艺 生态学 冶金 材料科学
作者
Jinbang Peng,Dongliang Wang,Wanxue Zhu,Ting Yang,Zhen Liu,Ehsan Eyshi Rezaei,Jing Li,Zhigang Sun,Xiaoping Xin
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103494-103494 被引量:1
标识
DOI:10.1016/j.jag.2023.103494
摘要

A non-destructive, convenient, and low-cost yield estimation at the field scale is vital for precision farming. Significant progress has been made in using UAV-based canopy features to predict crop yield during the mid-growth stages. However, there has been limited effort to explore yield estimation specifically after crop maturity. Researching the effectiveness of artificial intelligence for estimating wheat yield utilizing phenotypic features extracted from UAV images, this study applied a deep learning algorithm (Mask R-CNN) to extract three wheat ear phenotypic features at ripening stage, including ear count, ear size, and ear anomaly index. Subsequently, machine learning algorithms (i.e., multiple linear regression, support vector regression, and random forest regression) driven by ear features were intercompared to obtain the optimal grain yield estimation. Based on the findings, (1) field observed ear count which was linearly associated with grain yield (R2 = 0.93), can be largely detected by UAV images (81 %); (2) Mask R-CNN demonstrated satisfactory performance in ear segmentation, achieving an F1 score of 0.87; (3) random forest regression resulted in the most accurate yield estimation (R2 = 0.86 and rRMSE = 17.53 %), when all three ear phenotypic features were combined. Overall, this study demonstrates that utilizing ear phenotypic features is an alternative approach for estimating wheat grain yield at ripening stage, showing potential as a viable substitute to tedious field sampling methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Jasper应助高挑的梦芝采纳,获得10
4秒前
zhangyafei完成签到,获得积分10
4秒前
caoyy发布了新的文献求助10
5秒前
psy完成签到,获得积分10
6秒前
Lucas应助呼斯冷采纳,获得10
6秒前
7秒前
jimskylxk发布了新的文献求助10
7秒前
研友_Good Hope完成签到,获得积分10
8秒前
8秒前
王先生发布了新的文献求助10
8秒前
刘三哥完成签到 ,获得积分10
10秒前
背后的幻巧完成签到,获得积分10
10秒前
msp发布了新的文献求助10
12秒前
12秒前
哈哈哈完成签到 ,获得积分10
13秒前
爆米花应助jimskylxk采纳,获得10
13秒前
大模型应助柍踏采纳,获得10
14秒前
乐乐应助April采纳,获得10
16秒前
16秒前
岂曰无衣完成签到 ,获得积分10
17秒前
李健的小迷弟应助哦哦哦采纳,获得10
19秒前
呼斯冷发布了新的文献求助10
20秒前
CipherSage应助msp采纳,获得10
21秒前
21秒前
领导范儿应助小明采纳,获得10
27秒前
陆一完成签到 ,获得积分10
27秒前
xu发布了新的文献求助10
28秒前
大个应助柍踏采纳,获得10
29秒前
科研通AI6.1应助王先生采纳,获得10
30秒前
31秒前
33秒前
33秒前
rwq完成签到 ,获得积分10
34秒前
哦哦哦发布了新的文献求助10
35秒前
wab完成签到,获得积分0
36秒前
jimskylxk发布了新的文献求助10
36秒前
研友_VZG7GZ应助柍踏采纳,获得10
38秒前
bobokan应助义气翩跹采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958