Combination of UAV and deep learning to estimate wheat yield at ripening stage: The potential of phenotypic features

随机森林 产量(工程) 回归 回归分析 成熟 天蓬 人工智能 分割 线性回归 支持向量机 数学 统计 计算机科学 生物 园艺 生态学 材料科学 冶金
作者
Jinbang Peng,Dongliang Wang,Wanxue Zhu,Ting Yang,Zhen Liu,Ehsan Eyshi Rezaei,Jing Li,Zhigang Sun,Xiaoping Xin
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103494-103494 被引量:1
标识
DOI:10.1016/j.jag.2023.103494
摘要

A non-destructive, convenient, and low-cost yield estimation at the field scale is vital for precision farming. Significant progress has been made in using UAV-based canopy features to predict crop yield during the mid-growth stages. However, there has been limited effort to explore yield estimation specifically after crop maturity. Researching the effectiveness of artificial intelligence for estimating wheat yield utilizing phenotypic features extracted from UAV images, this study applied a deep learning algorithm (Mask R-CNN) to extract three wheat ear phenotypic features at ripening stage, including ear count, ear size, and ear anomaly index. Subsequently, machine learning algorithms (i.e., multiple linear regression, support vector regression, and random forest regression) driven by ear features were intercompared to obtain the optimal grain yield estimation. Based on the findings, (1) field observed ear count which was linearly associated with grain yield (R2 = 0.93), can be largely detected by UAV images (81 %); (2) Mask R-CNN demonstrated satisfactory performance in ear segmentation, achieving an F1 score of 0.87; (3) random forest regression resulted in the most accurate yield estimation (R2 = 0.86 and rRMSE = 17.53 %), when all three ear phenotypic features were combined. Overall, this study demonstrates that utilizing ear phenotypic features is an alternative approach for estimating wheat grain yield at ripening stage, showing potential as a viable substitute to tedious field sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊是是是发布了新的文献求助10
刚刚
禾禾发布了新的文献求助10
刚刚
刚刚
刚刚
搞怪远山发布了新的文献求助30
刚刚
刚刚
小林完成签到,获得积分10
1秒前
李爱国应助雨濛濛采纳,获得10
1秒前
糖布里部发布了新的文献求助10
1秒前
sophia完成签到 ,获得积分10
1秒前
1秒前
小土豆发布了新的文献求助10
1秒前
逢春完成签到,获得积分10
2秒前
2秒前
explosion完成签到,获得积分10
2秒前
小小圣发布了新的文献求助10
2秒前
CHENG完成签到,获得积分10
3秒前
3秒前
3秒前
cheetollly发布了新的文献求助10
3秒前
星落枝头发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
小满发布了新的文献求助10
5秒前
长情天川发布了新的文献求助10
5秒前
enen发布了新的文献求助10
5秒前
trophozoite发布了新的文献求助10
6秒前
6秒前
搜集达人应助浮浮世世采纳,获得10
6秒前
6秒前
Rabinear发布了新的文献求助10
6秒前
萧木木关注了科研通微信公众号
7秒前
7秒前
慕青应助小狸采纳,获得10
7秒前
8秒前
Annlucy完成签到 ,获得积分10
9秒前
开心蛋挞完成签到,获得积分10
9秒前
CipherSage应助疯狂的冬瓜采纳,获得10
9秒前
9秒前
科研通AI5应助LLLUIUI采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001275
求助须知:如何正确求助?哪些是违规求助? 4246504
关于积分的说明 13229609
捐赠科研通 4045157
什么是DOI,文献DOI怎么找? 2212990
邀请新用户注册赠送积分活动 1223162
关于科研通互助平台的介绍 1143474