Combination of UAV and deep learning to estimate wheat yield at ripening stage: The potential of phenotypic features

随机森林 产量(工程) 回归 回归分析 成熟 天蓬 人工智能 分割 线性回归 支持向量机 数学 统计 计算机科学 生物 园艺 生态学 材料科学 冶金
作者
Jinbang Peng,Dongliang Wang,Wanxue Zhu,Ting Yang,Zhen Liu,Ehsan Eyshi Rezaei,Jing Li,Zhigang Sun,Xiaoping Xin
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103494-103494 被引量:1
标识
DOI:10.1016/j.jag.2023.103494
摘要

A non-destructive, convenient, and low-cost yield estimation at the field scale is vital for precision farming. Significant progress has been made in using UAV-based canopy features to predict crop yield during the mid-growth stages. However, there has been limited effort to explore yield estimation specifically after crop maturity. Researching the effectiveness of artificial intelligence for estimating wheat yield utilizing phenotypic features extracted from UAV images, this study applied a deep learning algorithm (Mask R-CNN) to extract three wheat ear phenotypic features at ripening stage, including ear count, ear size, and ear anomaly index. Subsequently, machine learning algorithms (i.e., multiple linear regression, support vector regression, and random forest regression) driven by ear features were intercompared to obtain the optimal grain yield estimation. Based on the findings, (1) field observed ear count which was linearly associated with grain yield (R2 = 0.93), can be largely detected by UAV images (81 %); (2) Mask R-CNN demonstrated satisfactory performance in ear segmentation, achieving an F1 score of 0.87; (3) random forest regression resulted in the most accurate yield estimation (R2 = 0.86 and rRMSE = 17.53 %), when all three ear phenotypic features were combined. Overall, this study demonstrates that utilizing ear phenotypic features is an alternative approach for estimating wheat grain yield at ripening stage, showing potential as a viable substitute to tedious field sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
遥远的尧应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
奋斗枫应助科研通管家采纳,获得20
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
yang完成签到,获得积分10
2秒前
善学以致用应助无奈薯片采纳,获得10
6秒前
啵清啵发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
搞怪哑铃发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助nove999采纳,获得10
10秒前
隐形曼青应助专注的小蕾采纳,获得10
10秒前
10秒前
KLM发布了新的文献求助10
12秒前
Hayat应助熹熹采纳,获得10
13秒前
15秒前
16秒前
selena完成签到,获得积分10
17秒前
JamesPei应助atcha采纳,获得10
18秒前
nyc关注了科研通微信公众号
19秒前
kokocrl完成签到,获得积分10
19秒前
能干幼珊发布了新的文献求助10
20秒前
热塑性哈士奇完成签到,获得积分10
20秒前
852应助smile采纳,获得10
21秒前
骆十八完成签到,获得积分10
22秒前
细腻的雅山完成签到 ,获得积分10
26秒前
26秒前
意义完成签到,获得积分20
26秒前
景辣条发布了新的文献求助10
28秒前
30秒前
31秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228