Combination of UAV and deep learning to estimate wheat yield at ripening stage: The potential of phenotypic features

随机森林 产量(工程) 回归 回归分析 成熟 天蓬 人工智能 分割 线性回归 支持向量机 数学 统计 计算机科学 生物 园艺 生态学 冶金 材料科学
作者
Jinbang Peng,Dongliang Wang,Wanxue Zhu,Ting Yang,Zhen Liu,Ehsan Eyshi Rezaei,Jing Li,Zhigang Sun,Xiaoping Xin
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103494-103494 被引量:1
标识
DOI:10.1016/j.jag.2023.103494
摘要

A non-destructive, convenient, and low-cost yield estimation at the field scale is vital for precision farming. Significant progress has been made in using UAV-based canopy features to predict crop yield during the mid-growth stages. However, there has been limited effort to explore yield estimation specifically after crop maturity. Researching the effectiveness of artificial intelligence for estimating wheat yield utilizing phenotypic features extracted from UAV images, this study applied a deep learning algorithm (Mask R-CNN) to extract three wheat ear phenotypic features at ripening stage, including ear count, ear size, and ear anomaly index. Subsequently, machine learning algorithms (i.e., multiple linear regression, support vector regression, and random forest regression) driven by ear features were intercompared to obtain the optimal grain yield estimation. Based on the findings, (1) field observed ear count which was linearly associated with grain yield (R2 = 0.93), can be largely detected by UAV images (81 %); (2) Mask R-CNN demonstrated satisfactory performance in ear segmentation, achieving an F1 score of 0.87; (3) random forest regression resulted in the most accurate yield estimation (R2 = 0.86 and rRMSE = 17.53 %), when all three ear phenotypic features were combined. Overall, this study demonstrates that utilizing ear phenotypic features is an alternative approach for estimating wheat grain yield at ripening stage, showing potential as a viable substitute to tedious field sampling methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助lqy采纳,获得10
1秒前
2秒前
CAOHOU应助Mr.Ren采纳,获得10
3秒前
完美世界应助iamssj采纳,获得10
3秒前
念念发布了新的文献求助10
3秒前
4秒前
5秒前
laj发布了新的文献求助10
5秒前
Kittymiaoo发布了新的文献求助10
6秒前
领导范儿应助探探采纳,获得10
7秒前
8秒前
Xulun发布了新的文献求助10
8秒前
绾绾完成签到 ,获得积分10
8秒前
yang完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
时光完成签到,获得积分10
10秒前
10秒前
10秒前
合适小凝完成签到,获得积分10
10秒前
长情的问枫关注了科研通微信公众号
11秒前
Ideal应助guozizi采纳,获得50
11秒前
12秒前
dy完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
端庄的夜蕾完成签到,获得积分10
13秒前
时光发布了新的文献求助10
14秒前
zzz完成签到,获得积分10
14秒前
迪克大完成签到,获得积分10
14秒前
14秒前
0919完成签到 ,获得积分10
14秒前
无花果应助laj采纳,获得10
14秒前
14秒前
322628发布了新的文献求助10
15秒前
lft361完成签到,获得积分10
16秒前
科研通AI6.1应助taeyy13采纳,获得10
17秒前
17秒前
iamssj完成签到,获得积分20
17秒前
洪子睿发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783854
求助须知:如何正确求助?哪些是违规求助? 5679357
关于积分的说明 15462389
捐赠科研通 4913221
什么是DOI,文献DOI怎么找? 2644567
邀请新用户注册赠送积分活动 1592324
关于科研通互助平台的介绍 1546965