Combination of UAV and deep learning to estimate wheat yield at ripening stage: The potential of phenotypic features

随机森林 产量(工程) 回归 回归分析 成熟 天蓬 人工智能 分割 线性回归 支持向量机 数学 统计 计算机科学 生物 园艺 生态学 冶金 材料科学
作者
Jinbang Peng,Dongliang Wang,Wanxue Zhu,Ting Yang,Zhen Liu,Ehsan Eyshi Rezaei,Jing Li,Zhigang Sun,Xiaoping Xin
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103494-103494 被引量:1
标识
DOI:10.1016/j.jag.2023.103494
摘要

A non-destructive, convenient, and low-cost yield estimation at the field scale is vital for precision farming. Significant progress has been made in using UAV-based canopy features to predict crop yield during the mid-growth stages. However, there has been limited effort to explore yield estimation specifically after crop maturity. Researching the effectiveness of artificial intelligence for estimating wheat yield utilizing phenotypic features extracted from UAV images, this study applied a deep learning algorithm (Mask R-CNN) to extract three wheat ear phenotypic features at ripening stage, including ear count, ear size, and ear anomaly index. Subsequently, machine learning algorithms (i.e., multiple linear regression, support vector regression, and random forest regression) driven by ear features were intercompared to obtain the optimal grain yield estimation. Based on the findings, (1) field observed ear count which was linearly associated with grain yield (R2 = 0.93), can be largely detected by UAV images (81 %); (2) Mask R-CNN demonstrated satisfactory performance in ear segmentation, achieving an F1 score of 0.87; (3) random forest regression resulted in the most accurate yield estimation (R2 = 0.86 and rRMSE = 17.53 %), when all three ear phenotypic features were combined. Overall, this study demonstrates that utilizing ear phenotypic features is an alternative approach for estimating wheat grain yield at ripening stage, showing potential as a viable substitute to tedious field sampling methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助优雅翎采纳,获得10
1秒前
桐桐应助蒸盐粥采纳,获得10
1秒前
1秒前
小伙伴完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
2秒前
zz发布了新的文献求助10
2秒前
11发布了新的文献求助10
3秒前
俭朴完成签到,获得积分20
3秒前
wwe发布了新的文献求助10
4秒前
万能图书馆应助hhj采纳,获得10
4秒前
4秒前
5秒前
刘丽完成签到,获得积分20
6秒前
6秒前
hami发布了新的文献求助10
6秒前
要减肥的夜蕾完成签到,获得积分20
6秒前
MLL关闭了MLL文献求助
6秒前
FiFi完成签到 ,获得积分10
7秒前
mei发布了新的文献求助10
7秒前
香蕉觅云应助zkc采纳,获得10
8秒前
8秒前
9秒前
蔺山河完成签到,获得积分10
9秒前
樱铃完成签到,获得积分10
9秒前
9秒前
人小鸭儿大完成签到 ,获得积分10
9秒前
9秒前
10秒前
fangtong发布了新的文献求助10
10秒前
慈祥的梦露完成签到,获得积分10
10秒前
Akim应助chai采纳,获得10
10秒前
科研鬼才完成签到,获得积分20
10秒前
11秒前
珃苒冉`发布了新的文献求助10
12秒前
12秒前
13秒前
junheng740发布了新的文献求助10
13秒前
大树发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003