Deep neural network CSES-NET and multi-channel feature fusion for Alzheimer's disease diagnosis

计算机科学 人工智能 Softmax函数 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 人工神经网络 神经影像学 体素 神经科学 生物 哲学 语言学
作者
Jianping Qiao,Mowen Zhang,Yanling Fan,Kunlun Fang,Xiuhe Zhao,Shengjun Wang,Zhishun Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105482-105482 被引量:4
标识
DOI:10.1016/j.bspc.2023.105482
摘要

Alzheimer's disease (AD) is an irreversible brain disease. The structural Magnetic Resonance Imaging (sMRI) has been widely used in the diagnosis of AD. However, the characteristic information from a single-mode is not comprehensive. In this paper, we proposed a Convolutional- Squeeze-Excitation-Softmax-NET (CSES-NET) deep neural network combined with multi-channel feature fusion for the diagnosis of AD. First, three kinds of features were extracted including patches based on voxel morphology, cortical features based on surface morphology, and radiomics features. Next, the residual network CSES-NET was proposed to extract the deep features from the patch images in which the features were re-scaled in the residual structure in order to fit the correlation between channels. Then, the fused features of the three channels were applied to classify AD/EMCI/LMCI/NC with the fully connected neural network. Finally, radiomics and cortical features were combined with genetic data for genome-wide association study to assess genetic variants. We performed experiments with 1539 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results verified that the proposed method improved the effectiveness of the model by extracting nonlinear deep features and fusing the multi-channel features. In addition, the genome-wide association study identified multiple risk SNPs loci which were associated with the pathological of AD and contributed to the early prevention and control of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Neon发布了新的文献求助10
1秒前
Ivy完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
4秒前
科研通AI2S应助陌路孤星采纳,获得10
5秒前
6秒前
anderson1738发布了新的文献求助10
9秒前
biglxq发布了新的文献求助10
10秒前
11秒前
个性的酥肉关注了科研通微信公众号
11秒前
枝江小学生完成签到,获得积分10
13秒前
陈媛发布了新的文献求助10
15秒前
科研通AI2S应助DTP采纳,获得10
16秒前
JOKE完成签到,获得积分10
16秒前
17秒前
天天快乐应助谦让的语儿采纳,获得10
18秒前
18秒前
紫易发布了新的文献求助30
22秒前
科研通AI2S应助陌路孤星采纳,获得30
22秒前
23秒前
哈哈哈哈哈完成签到,获得积分10
23秒前
啦啦啦大大大雷完成签到,获得积分10
23秒前
英姑应助朱朱采纳,获得10
24秒前
婉约清扬完成签到 ,获得积分10
27秒前
聪聪发布了新的文献求助20
28秒前
蘑菇完成签到,获得积分10
29秒前
29秒前
洁净的橘子完成签到,获得积分10
29秒前
星辰大海应助沉静的函采纳,获得10
29秒前
白天亮发布了新的文献求助10
31秒前
菲灵完成签到,获得积分10
31秒前
31秒前
橙子发布了新的文献求助10
31秒前
舒适涵山完成签到,获得积分10
31秒前
eLiauK发布了新的文献求助10
32秒前
清秀聪健完成签到,获得积分10
33秒前
33秒前
穆紫应助红宝采纳,获得20
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323