Deep neural network CSES-NET and multi-channel feature fusion for Alzheimer's disease diagnosis

计算机科学 人工智能 Softmax函数 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 人工神经网络 神经影像学 体素 神经科学 生物 哲学 语言学
作者
Jianping Qiao,Mowen Zhang,Yanling Fan,Kunlun Fang,Xiuhe Zhao,Shengjun Wang,Zhishun Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105482-105482 被引量:4
标识
DOI:10.1016/j.bspc.2023.105482
摘要

Alzheimer's disease (AD) is an irreversible brain disease. The structural Magnetic Resonance Imaging (sMRI) has been widely used in the diagnosis of AD. However, the characteristic information from a single-mode is not comprehensive. In this paper, we proposed a Convolutional- Squeeze-Excitation-Softmax-NET (CSES-NET) deep neural network combined with multi-channel feature fusion for the diagnosis of AD. First, three kinds of features were extracted including patches based on voxel morphology, cortical features based on surface morphology, and radiomics features. Next, the residual network CSES-NET was proposed to extract the deep features from the patch images in which the features were re-scaled in the residual structure in order to fit the correlation between channels. Then, the fused features of the three channels were applied to classify AD/EMCI/LMCI/NC with the fully connected neural network. Finally, radiomics and cortical features were combined with genetic data for genome-wide association study to assess genetic variants. We performed experiments with 1539 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results verified that the proposed method improved the effectiveness of the model by extracting nonlinear deep features and fusing the multi-channel features. In addition, the genome-wide association study identified multiple risk SNPs loci which were associated with the pathological of AD and contributed to the early prevention and control of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kilig应助hohokuz采纳,获得10
1秒前
LKSkywalker完成签到,获得积分10
1秒前
1秒前
田様应助大晨采纳,获得10
1秒前
BWZ发布了新的文献求助10
1秒前
3秒前
西子阳发布了新的文献求助10
3秒前
3秒前
下课了吧发布了新的文献求助10
3秒前
3秒前
朴实山兰完成签到,获得积分10
3秒前
3秒前
4秒前
啊嚯发布了新的文献求助10
4秒前
草上飞完成签到 ,获得积分10
4秒前
小罗飞飞飞完成签到 ,获得积分10
4秒前
4秒前
L龙完成签到,获得积分20
5秒前
雯雯完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
科研通AI5应助LZZ采纳,获得10
5秒前
情怀应助WxChen采纳,获得10
5秒前
Akim应助WxChen采纳,获得10
6秒前
深情安青应助WxChen采纳,获得10
6秒前
请叫我风吹麦浪应助WxChen采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
Dean完成签到 ,获得积分10
7秒前
乔乔发布了新的文献求助10
7秒前
小蘑菇应助ht2025采纳,获得10
7秒前
耍酷花卷发布了新的文献求助10
8秒前
微笑如冰发布了新的文献求助10
8秒前
二二二发布了新的文献求助10
8秒前
一颗柚子完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762