Deep neural network CSES-NET and multi-channel feature fusion for Alzheimer's disease diagnosis

计算机科学 人工智能 Softmax函数 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 人工神经网络 神经影像学 体素 神经科学 生物 哲学 语言学
作者
Jianping Qiao,Mowen Zhang,Yanling Fan,Kunlun Fang,Xiuhe Zhao,Shengjun Wang,Zhishun Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105482-105482 被引量:6
标识
DOI:10.1016/j.bspc.2023.105482
摘要

Alzheimer's disease (AD) is an irreversible brain disease. The structural Magnetic Resonance Imaging (sMRI) has been widely used in the diagnosis of AD. However, the characteristic information from a single-mode is not comprehensive. In this paper, we proposed a Convolutional- Squeeze-Excitation-Softmax-NET (CSES-NET) deep neural network combined with multi-channel feature fusion for the diagnosis of AD. First, three kinds of features were extracted including patches based on voxel morphology, cortical features based on surface morphology, and radiomics features. Next, the residual network CSES-NET was proposed to extract the deep features from the patch images in which the features were re-scaled in the residual structure in order to fit the correlation between channels. Then, the fused features of the three channels were applied to classify AD/EMCI/LMCI/NC with the fully connected neural network. Finally, radiomics and cortical features were combined with genetic data for genome-wide association study to assess genetic variants. We performed experiments with 1539 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results verified that the proposed method improved the effectiveness of the model by extracting nonlinear deep features and fusing the multi-channel features. In addition, the genome-wide association study identified multiple risk SNPs loci which were associated with the pathological of AD and contributed to the early prevention and control of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
久久阳光完成签到,获得积分10
1秒前
太和竹签完成签到 ,获得积分10
1秒前
2秒前
认真搞科研完成签到,获得积分10
3秒前
牛芳草完成签到,获得积分10
3秒前
tanrui完成签到,获得积分10
4秒前
5秒前
赖皮狗发布了新的文献求助10
6秒前
6秒前
8秒前
10秒前
11秒前
11秒前
脑洞疼应助科研小狗采纳,获得10
12秒前
12秒前
13秒前
14秒前
456发布了新的文献求助10
14秒前
Hongtauo发布了新的文献求助10
16秒前
16秒前
caibao发布了新的文献求助10
16秒前
17秒前
19秒前
orixero应助星期五采纳,获得10
19秒前
一叶知秋发布了新的文献求助10
21秒前
21秒前
456完成签到,获得积分10
23秒前
林爷完成签到,获得积分10
23秒前
zzp完成签到,获得积分10
25秒前
25秒前
Richard完成签到 ,获得积分10
28秒前
科研小狗发布了新的文献求助10
28秒前
30秒前
乔若灵完成签到 ,获得积分10
32秒前
香蕉觅云应助紫薯球采纳,获得10
32秒前
33秒前
35秒前
星期五发布了新的文献求助10
35秒前
jackjiang关注了科研通微信公众号
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962882
求助须知:如何正确求助?哪些是违规求助? 3508809
关于积分的说明 11143356
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579