Novel accordion-like structure of SiC/C composites for enhanced electromagnetic wave absorption

材料科学 手风琴 复合材料 电介质 堆积 吸收(声学) 反射损耗 光电子学 复合数 计算机科学 核磁共振 物理 万维网
作者
Bingkun Xu,Qinchuan He,Yiqun Wang,Xuemin Yin
出处
期刊:Carbon [Elsevier]
卷期号:215: 118470-118470 被引量:48
标识
DOI:10.1016/j.carbon.2023.118470
摘要

Two-dimensional (2D) composites have been identified as a rising star in the exploration of efficient electromagnetic wave (EMW) absorbers due to their structural designability and tunable dielectric constants. However, how to address the high filling rate of absorbers with 2D microstructures and the easy stacking problem between layers remain difficult and painful points. Inspired by the adjustable spacing of expanded graphite layers, it is rationally proposed to prepare unique and novel 2D accordion like SiC/C composites by microwave-assisted method and carbothermal reduction strategy. The microstructural modification and multicomponent modulation are achieved by regulating the carbothermal reduction temperature. The results confirm that the presence of plentiful inhomogeneous interfaces in 2D accordion like SiC/C composites, the enhanced dipole polarization, the improved conductive loss due to the unique 2D accordion like structure endow carriers with more paths, and the optimized impedance matching due to the porous structure synergistically result in superior EMW absorption properties. 2D accordion like SiC/C-2 exhibits a minimum reflection loss of −54.52 dB at 8.72 GHz with an ultra-low fill rate of 3%, and the effective absorption range covers 11.40 GHz (7.60–18 GHz) at a total thickness of 1.20 mm (1.23–2.43 mm), which is 71.25% of the whole range of frequencies. Additionally, radar cross section (RCS) simulations verify that 2D accordion like SiC/C-2 can dissipate more EMW in a real environment. This work provides a reference for the rational construction of novel high-performance 2D structural absorbers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助huanxi采纳,获得10
刚刚
1秒前
陈陈发布了新的文献求助10
1秒前
1秒前
1秒前
sophia完成签到,获得积分10
1秒前
ysy完成签到,获得积分10
1秒前
3秒前
5秒前
KKKKK完成签到,获得积分10
5秒前
6秒前
充电宝应助无异常采纳,获得10
6秒前
一步一花青完成签到,获得积分10
7秒前
执着的莆发布了新的文献求助10
7秒前
8秒前
能干储发布了新的文献求助10
8秒前
8秒前
9秒前
共享精神应助贝利亚采纳,获得10
9秒前
喜悦飞鸟完成签到,获得积分10
9秒前
可爱的函函应助合欢采纳,获得10
9秒前
scugy发布了新的文献求助10
10秒前
可爱的函函应助vickymr采纳,获得10
10秒前
11秒前
laurel发布了新的文献求助10
12秒前
星辰大海应助英俊的白安采纳,获得10
12秒前
12秒前
13秒前
14秒前
16秒前
Gzdaigzn完成签到,获得积分10
16秒前
16秒前
陶醉清发布了新的文献求助10
17秒前
17秒前
南南东发布了新的文献求助10
17秒前
17秒前
芒果完成签到 ,获得积分10
18秒前
18秒前
Chan完成签到,获得积分10
19秒前
贝利亚发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909