Robust unsupervised 5D seismic data reconstruction on both regular and irregular grid

网格 计算机科学 地质学 地震学 规则网格 数据挖掘 模式识别(心理学) 人工智能 大地测量学
作者
Ji Li,Dawei Liu,Daniel Trad,Mauricio D. Sacchi
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-86
标识
DOI:10.1190/geo2024-0098.1
摘要

Seismic data reconstruction in five dimensions (5D) has become a central focus in seismic data processing, addressing challenges posed by irregular sampling due to physical and budgetary constraints. Most traditional high-dimensional reconstruction methods commonly utilize the fast Fourier transform (FFT), requiring regular grids and preliminary 4D binning before 5D interpolation. Discrete Fourier transform and non-equidistant FFT can honour original irregular coordinates. However, when using exact locations, these methods become computationally expensive. This study introduces an unsupervised deep-learning methodology to learn a continuous function across sampling points in seismic data, facilitating reconstruction on both regular and irregular grids. The network comprises a multilayer perceptron (MLP) with linear layers and element-wise periodic activation functions. It excels at mapping input coordinates to corresponding seismic data amplitudes without relying on external training sets. The network’s intrinsic low-frequency bias is crucial in prioritizing acquiring self-similar features over high-frequency, incoherent ones during training. This characteristic mitigates incoherent noise in seismic data, including random and erratic components. To assess the robustness of the unsupervised reconstruction technique, we conduct comprehensive evaluations using synthetic data examples sampled both regularly and irregularly, as well as field-data examples with and without binning. The findings demonstrate the efficacy of the proposed deep-learning framework in achieving resilient and accurate seismic data reconstruction across diverse sampling scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助qiu采纳,获得10
1秒前
2秒前
小耶完成签到 ,获得积分10
3秒前
5秒前
挽月应助LDY采纳,获得10
6秒前
7秒前
10秒前
不远完成签到,获得积分10
10秒前
13秒前
18秒前
大个应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
丘比特应助ywj采纳,获得30
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
maox1aoxin应助科研通管家采纳,获得30
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
小二郎应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
Akim应助科研通管家采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290