污染
环境化学
环境科学
化学
水污染
生物
生态学
作者
Quan Gao,Zhenyu Wang,Wenqing Long,Qiuyun Huang,Jinna Zhang,Jin Zhang,Pei Hua,Guang‐Guo Ying
出处
期刊:ACS ES&T water
[American Chemical Society]
日期:2024-07-13
卷期号:4 (8): 3380-3390
被引量:1
标识
DOI:10.1021/acsestwater.4c00249
摘要
Emerging contaminants (ECs) are increasingly discharged into the aquatic environment and cannot be removed by conventional water treatment processes. The detection of various disinfection byproducts (DBPs) originating from ECs as possible precursors is challenging. Herein, liquid chromatography coupled with time-of-flight mass spectrometry was used for the suspect and nontarget screening of ECs and DBPs simultaneously in the effluent of drinking water treatment plants and distribution systems. Forty-one ECs and 27 DBPs were identified, corresponding to different confidence levels (1–3). Pesticides, pharmaceuticals, and personal care products accounted for approximately 63% of the ECs. Halophenols and halonitrophenols were the predominant categories of aromatic DBPs. Three EC species [4-nitrophenol, 3-methyl-4-nitrophenol, and enrofloxacin] and their confirmed DBPs [2,6-dichloro-4-nitrophenol, 2-bromo-6-chloro-4-nitrophenol, 2,6-dibromo-4-nitrophenol, 2-bromo-4-nitrophenol, and 3-chloro-5-(chloromethyl)-4-nitrophenol] were simultaneously detected in the drinking water distribution system. The intensity of aromatic DBPs initially increased and then decreased with transportation in branched drinking water distribution systems, consistent with the quantification results. Thus, the transportation process in drinking water distribution systems impacts DBP formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI