亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Driven Knowledge Fusion for Deep Multi-Instance Learning

深度学习 人工智能 计算机科学 融合 机器学习 哲学 语言学
作者
Yu-Xuan Zhang,Zhengchun Zhou,Xingxing He,Avik Ranjan Adhikary,Bapi Dutta
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:3
标识
DOI:10.1109/tnnls.2024.3436944
摘要

Multi-instance learning (MIL) is a widely applied technique in practical applications that involve complex data structures. MIL can be broadly categorized into two types: traditional methods and those based on deep learning. These approaches have yielded significant results, especially regarding their problem-solving strategies and experiment validation, providing valuable insights for researchers in the MIL field. However, considerable knowledge is often trapped within the algorithm, leading to subsequent MIL algorithms that rely solely on the model's data fitting to predict unlabeled samples. This results in a significant loss of knowledge and impedes the development of more powerful models. In this article, we propose a novel data-driven knowledge fusion for deep MIL (DKMIL) algorithm. DKMIL adopts a completely different idea from existing deep MIL methods by analyzing the decision-making of key samples in the dataset (referred to as the data-driven) and using the knowledge fusion module designed to extract valuable information from these samples to assist the model's learning. In other words, this module serves as a new interface between data and the model, providing strong scalability and enabling prior knowledge from existing algorithms to enhance the model's learning ability. Furthermore, to adapt the downstream modules of the model to more knowledge-enriched features extracted from the data-driven knowledge fusion (DDKF) module, we propose a two-level attention (TLA) module that gradually learns shallow-and deep-level features of the samples to achieve more effective classification. We will prove the scalability of the knowledge fusion module and verify the efficiency of the proposed architecture by conducting experiments on 62 datasets across five categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科目三应助帅气雨珍采纳,获得20
8秒前
26秒前
Mark_He发布了新的文献求助10
32秒前
淡然的鸽子完成签到 ,获得积分10
33秒前
cen完成签到,获得积分10
41秒前
48秒前
CodeCraft应助曹能豪采纳,获得10
49秒前
搜集达人应助科研通管家采纳,获得10
50秒前
50秒前
50秒前
50秒前
xin完成签到,获得积分10
52秒前
哇啦啦发布了新的文献求助10
54秒前
能干觅夏完成签到 ,获得积分10
57秒前
57秒前
曹能豪发布了新的文献求助10
1分钟前
黑豆也发布了新的文献求助10
1分钟前
桐桐应助粗心的小蜜蜂采纳,获得10
1分钟前
黑豆也完成签到,获得积分10
1分钟前
善良的蛋挞完成签到,获得积分10
1分钟前
1分钟前
xftx完成签到,获得积分10
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
栗子完成签到,获得积分10
1分钟前
文豪发布了新的文献求助10
1分钟前
搜集达人应助文豪采纳,获得10
1分钟前
2分钟前
2分钟前
lyu发布了新的文献求助10
2分钟前
精明的荔枝完成签到 ,获得积分10
2分钟前
2分钟前
于清绝完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
TiAmo完成签到 ,获得积分10
2分钟前
帅气雨珍发布了新的文献求助20
2分钟前
童俊江完成签到 ,获得积分20
2分钟前
FashionBoy应助小LAN采纳,获得10
2分钟前
Jim发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581480
求助须知:如何正确求助?哪些是违规求助? 3999419
关于积分的说明 12381258
捐赠科研通 3674066
什么是DOI,文献DOI怎么找? 2024837
邀请新用户注册赠送积分活动 1058695
科研通“疑难数据库(出版商)”最低求助积分说明 945455