Data-Driven Knowledge Fusion for Deep Multi-Instance Learning

深度学习 人工智能 计算机科学 融合 机器学习 哲学 语言学
作者
Yu-Xuan Zhang,Zhengchun Zhou,Xingxing He,Avik Ranjan Adhikary,Bapi Dutta
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3436944
摘要

Multi-instance learning (MIL) is a widely applied technique in practical applications that involve complex data structures. MIL can be broadly categorized into two types: traditional methods and those based on deep learning. These approaches have yielded significant results, especially regarding their problem-solving strategies and experiment validation, providing valuable insights for researchers in the MIL field. However, considerable knowledge is often trapped within the algorithm, leading to subsequent MIL algorithms that rely solely on the model's data fitting to predict unlabeled samples. This results in a significant loss of knowledge and impedes the development of more powerful models. In this article, we propose a novel data-driven knowledge fusion for deep MIL (DKMIL) algorithm. DKMIL adopts a completely different idea from existing deep MIL methods by analyzing the decision-making of key samples in the dataset (referred to as the data-driven) and using the knowledge fusion module designed to extract valuable information from these samples to assist the model's learning. In other words, this module serves as a new interface between data and the model, providing strong scalability and enabling prior knowledge from existing algorithms to enhance the model's learning ability. Furthermore, to adapt the downstream modules of the model to more knowledge-enriched features extracted from the data-driven knowledge fusion (DDKF) module, we propose a two-level attention (TLA) module that gradually learns shallow-and deep-level features of the samples to achieve more effective classification. We will prove the scalability of the knowledge fusion module and verify the efficiency of the proposed architecture by conducting experiments on 62 datasets across five categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HH完成签到,获得积分10
刚刚
科研通AI2S应助飞羽采纳,获得10
刚刚
风中寄云完成签到,获得积分20
刚刚
故意的傲玉应助毛慢慢采纳,获得10
刚刚
刚刚
小白发布了新的文献求助10
刚刚
1秒前
1秒前
马尼拉发布了新的文献求助10
2秒前
CodeCraft应助dildil采纳,获得10
2秒前
2秒前
cyanpomelo完成签到 ,获得积分10
3秒前
3秒前
微笑高山完成签到 ,获得积分10
3秒前
文献查找发布了新的文献求助10
3秒前
加油完成签到,获得积分20
4秒前
Sunrise发布了新的文献求助10
4秒前
tabor发布了新的文献求助10
4秒前
唐妮完成签到,获得积分10
4秒前
啵清啵完成签到,获得积分10
5秒前
5秒前
莉莉发布了新的文献求助10
5秒前
6秒前
NexusExplorer应助平常的雁凡采纳,获得10
6秒前
Silverexile完成签到,获得积分10
7秒前
7秒前
唠叨的曼易完成签到,获得积分10
7秒前
Ymj关闭了Ymj文献求助
8秒前
木木雨完成签到,获得积分10
8秒前
8秒前
Harlotte发布了新的文献求助20
8秒前
LINxu发布了新的文献求助10
8秒前
今后应助加油采纳,获得10
8秒前
moonlight发布了新的文献求助10
9秒前
IMkily完成签到,获得积分10
10秒前
深情安青应助sunzhiyu233采纳,获得10
10秒前
10秒前
10秒前
sss发布了新的文献求助20
11秒前
氨基酸发布了新的文献求助30
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759