Data-Driven Knowledge Fusion for Deep Multi-Instance Learning

深度学习 人工智能 计算机科学 融合 机器学习 哲学 语言学
作者
Yu-Xuan Zhang,Zhengchun Zhou,Xingxing He,Avik Ranjan Adhikary,Bapi Dutta
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3436944
摘要

Multi-instance learning (MIL) is a widely applied technique in practical applications that involve complex data structures. MIL can be broadly categorized into two types: traditional methods and those based on deep learning. These approaches have yielded significant results, especially regarding their problem-solving strategies and experiment validation, providing valuable insights for researchers in the MIL field. However, considerable knowledge is often trapped within the algorithm, leading to subsequent MIL algorithms that rely solely on the model's data fitting to predict unlabeled samples. This results in a significant loss of knowledge and impedes the development of more powerful models. In this article, we propose a novel data-driven knowledge fusion for deep MIL (DKMIL) algorithm. DKMIL adopts a completely different idea from existing deep MIL methods by analyzing the decision-making of key samples in the dataset (referred to as the data-driven) and using the knowledge fusion module designed to extract valuable information from these samples to assist the model's learning. In other words, this module serves as a new interface between data and the model, providing strong scalability and enabling prior knowledge from existing algorithms to enhance the model's learning ability. Furthermore, to adapt the downstream modules of the model to more knowledge-enriched features extracted from the data-driven knowledge fusion (DDKF) module, we propose a two-level attention (TLA) module that gradually learns shallow-and deep-level features of the samples to achieve more effective classification. We will prove the scalability of the knowledge fusion module and verify the efficiency of the proposed architecture by conducting experiments on 62 datasets across five categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的人生完成签到,获得积分10
刚刚
慢慢发布了新的文献求助20
刚刚
孤独溪流发布了新的文献求助30
刚刚
咯咯完成签到,获得积分10
1秒前
1秒前
1秒前
大大怪完成签到,获得积分10
2秒前
popo完成签到,获得积分10
2秒前
Olivia关注了科研通微信公众号
3秒前
3秒前
坦率的金鱼完成签到,获得积分10
3秒前
zzz发布了新的文献求助30
4秒前
JamesPei应助esbd采纳,获得10
4秒前
一二发布了新的文献求助10
4秒前
Yu发布了新的文献求助10
4秒前
斯文墨镜发布了新的文献求助10
6秒前
NexusExplorer应助咪咪不吃糖采纳,获得10
6秒前
6秒前
ning完成签到,获得积分10
6秒前
6秒前
7秒前
十三月完成签到,获得积分10
7秒前
Gravity应助一川烟雨采纳,获得10
8秒前
桐桐应助多多12采纳,获得10
8秒前
Orange应助pe采纳,获得10
8秒前
pluto应助Matrix采纳,获得10
8秒前
Lucas应助liuv采纳,获得10
8秒前
10秒前
明理水之发布了新的文献求助30
10秒前
10秒前
有热心愿意完成签到,获得积分10
10秒前
羊村你喜哥完成签到,获得积分10
10秒前
寻道图强应助shangfeng采纳,获得30
11秒前
可可完成签到,获得积分10
11秒前
深情安青应助增缩减扩采纳,获得10
11秒前
11秒前
12秒前
Wys完成签到,获得积分10
12秒前
13秒前
宜醉宜游宜睡应助aaron采纳,获得10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152731
求助须知:如何正确求助?哪些是违规求助? 2803968
关于积分的说明 7856424
捐赠科研通 2461663
什么是DOI,文献DOI怎么找? 1310474
科研通“疑难数据库(出版商)”最低求助积分说明 629233
版权声明 601782