Data-Driven Knowledge Fusion for Deep Multi-Instance Learning

深度学习 人工智能 计算机科学 融合 机器学习 哲学 语言学
作者
Yu-Xuan Zhang,Zhengchun Zhou,Xingxing He,Avik Ranjan Adhikary,Bapi Dutta
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3436944
摘要

Multi-instance learning (MIL) is a widely applied technique in practical applications that involve complex data structures. MIL can be broadly categorized into two types: traditional methods and those based on deep learning. These approaches have yielded significant results, especially regarding their problem-solving strategies and experiment validation, providing valuable insights for researchers in the MIL field. However, considerable knowledge is often trapped within the algorithm, leading to subsequent MIL algorithms that rely solely on the model's data fitting to predict unlabeled samples. This results in a significant loss of knowledge and impedes the development of more powerful models. In this article, we propose a novel data-driven knowledge fusion for deep MIL (DKMIL) algorithm. DKMIL adopts a completely different idea from existing deep MIL methods by analyzing the decision-making of key samples in the dataset (referred to as the data-driven) and using the knowledge fusion module designed to extract valuable information from these samples to assist the model's learning. In other words, this module serves as a new interface between data and the model, providing strong scalability and enabling prior knowledge from existing algorithms to enhance the model's learning ability. Furthermore, to adapt the downstream modules of the model to more knowledge-enriched features extracted from the data-driven knowledge fusion (DDKF) module, we propose a two-level attention (TLA) module that gradually learns shallow-and deep-level features of the samples to achieve more effective classification. We will prove the scalability of the knowledge fusion module and verify the efficiency of the proposed architecture by conducting experiments on 62 datasets across five categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuyue发布了新的文献求助10
1秒前
qqqq发布了新的文献求助10
1秒前
wy.he应助bingbing采纳,获得10
1秒前
丘比特应助San_Chen采纳,获得10
1秒前
Jouleken完成签到,获得积分10
2秒前
上官尔芙完成签到,获得积分10
3秒前
3秒前
哈哈2022完成签到,获得积分10
3秒前
李李完成签到,获得积分10
5秒前
灯火完成签到,获得积分10
5秒前
wen完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
小象完成签到,获得积分10
6秒前
华仔应助木木三采纳,获得10
6秒前
7秒前
沉默画板完成签到 ,获得积分10
7秒前
有风的地方完成签到 ,获得积分10
7秒前
卡卡罗特先森完成签到 ,获得积分10
7秒前
ailyna发布了新的文献求助10
8秒前
8秒前
8秒前
ctomit发布了新的文献求助200
8秒前
bingbing完成签到,获得积分10
9秒前
朱建军应助yoyoo采纳,获得10
9秒前
斯文败类应助yyyy采纳,获得30
9秒前
haokeyan完成签到,获得积分10
10秒前
10秒前
fan发布了新的文献求助10
10秒前
lieditongxu发布了新的文献求助10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
一年5篇发布了新的文献求助10
12秒前
baekhyun发布了新的文献求助10
12秒前
果果完成签到,获得积分10
13秒前
小光光鸡鸡爆完成签到 ,获得积分10
13秒前
zxy完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086