Data-Driven Knowledge Fusion for Deep Multi-Instance Learning

深度学习 人工智能 计算机科学 融合 机器学习 哲学 语言学
作者
Yu-Xuan Zhang,Zhengchun Zhou,Xingxing He,Avik Ranjan Adhikary,Bapi Dutta
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (5): 8292-8306 被引量:4
标识
DOI:10.1109/tnnls.2024.3436944
摘要

Multi-instance learning (MIL) is a widely applied technique in practical applications that involve complex data structures. MIL can be broadly categorized into two types: traditional methods and those based on deep learning. These approaches have yielded significant results, especially regarding their problem-solving strategies and experiment validation, providing valuable insights for researchers in the MIL field. However, considerable knowledge is often trapped within the algorithm, leading to subsequent MIL algorithms that rely solely on the model's data fitting to predict unlabeled samples. This results in a significant loss of knowledge and impedes the development of more powerful models. In this article, we propose a novel data-driven knowledge fusion for deep MIL (DKMIL) algorithm. DKMIL adopts a completely different idea from existing deep MIL methods by analyzing the decision-making of key samples in the dataset (referred to as the data-driven) and using the knowledge fusion module designed to extract valuable information from these samples to assist the model's learning. In other words, this module serves as a new interface between data and the model, providing strong scalability and enabling prior knowledge from existing algorithms to enhance the model's learning ability. Furthermore, to adapt the downstream modules of the model to more knowledge-enriched features extracted from the data-driven knowledge fusion (DDKF) module, we propose a two-level attention (TLA) module that gradually learns shallow- and deep-level features of the samples to achieve more effective classification. We will prove the scalability of the knowledge fusion module and verify the efficiency of the proposed architecture by conducting experiments on 62 datasets across five categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夏发布了新的文献求助10
1秒前
TongXia发布了新的文献求助10
1秒前
我要读博士完成签到 ,获得积分10
1秒前
完美世界应助cz采纳,获得10
2秒前
静加油完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
F503完成签到,获得积分10
2秒前
han完成签到,获得积分10
2秒前
SciGPT应助hyx采纳,获得10
2秒前
和谐越彬发布了新的文献求助10
3秒前
3秒前
3秒前
缥缈的背包完成签到,获得积分10
3秒前
jiyixiao1完成签到,获得积分10
3秒前
4秒前
lili发布了新的文献求助10
4秒前
可靠的雨筠完成签到,获得积分10
4秒前
科研通AI6应助晓竹采纳,获得10
5秒前
FashionBoy应助Blowga采纳,获得10
5秒前
静加油发布了新的文献求助10
5秒前
大个应助zljgy2000采纳,获得30
5秒前
杨漫漫完成签到 ,获得积分10
5秒前
5秒前
敌敌畏完成签到,获得积分10
6秒前
落叶解三秋完成签到,获得积分10
6秒前
6秒前
打打应助京城不降雪c采纳,获得10
6秒前
6秒前
希望天下0贩的0应助su采纳,获得10
6秒前
CodeCraft应助AY采纳,获得10
7秒前
7秒前
23完成签到,获得积分20
7秒前
葛葛发布了新的文献求助20
7秒前
充电宝应助Wff采纳,获得10
8秒前
8秒前
飘逸楷瑞发布了新的文献求助10
8秒前
8秒前
哭泣海豚完成签到,获得积分10
8秒前
Akim应助奕_yinb采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827