已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TABLE: Time-aware Balanced Multi-view Learning for stock ranking

表(数据库) 排名(信息检索) 计算机科学 库存(枪支) 机器学习 人工智能 数据挖掘 工程类 机械工程
作者
Ying Liu,Cai Xu,Long Chen,Meng Yan,Wei Zhao,Ziyu Guan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:303: 112424-112424 被引量:11
标识
DOI:10.1016/j.knosys.2024.112424
摘要

Stock ranking is a significant and challenging problem. In recent years, the use of multi-view data, such as price and tweet, for stock ranking has gained considerable attention in the research field. Most existing methods are performed in (some of) the 3 steps: 1) view-specific representation learning; 2) cross-view representation interaction; 3) multi-view representation fusion. Although these methods make breakthroughs in stock ranking, they often treat all views equally. This neglects the unbalanced phenomenon in multi-view stock data, i.e., the dimension of the text view may be extremely big compared with those of other views; the price view exhibits standard and high-quality data, whereas the text view contains noise and has irregular time intervals. To solve this, we propose a Time-Aware Balanced multi-view LEarning (TABLE) method. TABLE method consists of a view-specific learning stage and a multi-view fusion stage. In the first stage, we aim to improve the quality of the low-quality text view. We achieve this by attenuating the negative impact of irrelevant texts using a hierarchical temporal attention mechanism that captures text correlations. Additionally, we explicitly model the time irregularities between sequential texts. In the fusion stage, we address the dimensions unbalance problem by establishing a multi-view decision fusion paradigm by weighted averaging the view-specific stock predictions. These weights are dynamic and determined based on the quality discrepancy between the views. Finally, we obtain the optimal stock ranking list by optimizing the point-wise regression loss and the ranking-aware loss. We empirically compare TABLE method with state-of-the-art baselines using the publicly available dataset, S&P500. The experimental results demonstrate that TABLE method outperforms the baseline methods in terms of accuracy and investment revenue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shy发布了新的文献求助10
刚刚
1秒前
彭于晏应助上官采纳,获得10
2秒前
楚慈楚发布了新的文献求助10
2秒前
CipherSage应助尚尚采纳,获得10
4秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
无极微光应助Jun采纳,获得20
7秒前
共享精神应助Walden采纳,获得10
8秒前
戚琪祁完成签到,获得积分10
10秒前
12秒前
酷波er应助Jesper采纳,获得10
14秒前
14秒前
高高冰旋完成签到,获得积分10
14秒前
16秒前
yyc完成签到,获得积分10
16秒前
ceeeeeeeeeeee完成签到,获得积分10
17秒前
舒服的鱼完成签到,获得积分10
17秒前
网络复杂完成签到,获得积分20
18秒前
番茄炒蛋发布了新的文献求助10
18秒前
18秒前
ilovelr关注了科研通微信公众号
19秒前
yhjjj完成签到,获得积分20
19秒前
19秒前
高高冰旋发布了新的文献求助10
19秒前
神龙尊者完成签到,获得积分20
20秒前
科研通AI6应助寇博翔采纳,获得10
21秒前
李健应助momo采纳,获得10
21秒前
搜集达人应助无奈灭绝采纳,获得10
22秒前
yunshui发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558