TABLE: Time-aware Balanced Multi-view Learning for stock ranking

表(数据库) 排名(信息检索) 计算机科学 库存(枪支) 机器学习 人工智能 数据挖掘 工程类 机械工程
作者
Ying Liu,Cai Xu,Long Chen,Meng Yan,Wei Zhao,Ziyu Guan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:303: 112424-112424 被引量:11
标识
DOI:10.1016/j.knosys.2024.112424
摘要

Stock ranking is a significant and challenging problem. In recent years, the use of multi-view data, such as price and tweet, for stock ranking has gained considerable attention in the research field. Most existing methods are performed in (some of) the 3 steps: 1) view-specific representation learning; 2) cross-view representation interaction; 3) multi-view representation fusion. Although these methods make breakthroughs in stock ranking, they often treat all views equally. This neglects the unbalanced phenomenon in multi-view stock data, i.e., the dimension of the text view may be extremely big compared with those of other views; the price view exhibits standard and high-quality data, whereas the text view contains noise and has irregular time intervals. To solve this, we propose a Time-Aware Balanced multi-view LEarning (TABLE) method. TABLE method consists of a view-specific learning stage and a multi-view fusion stage. In the first stage, we aim to improve the quality of the low-quality text view. We achieve this by attenuating the negative impact of irrelevant texts using a hierarchical temporal attention mechanism that captures text correlations. Additionally, we explicitly model the time irregularities between sequential texts. In the fusion stage, we address the dimensions unbalance problem by establishing a multi-view decision fusion paradigm by weighted averaging the view-specific stock predictions. These weights are dynamic and determined based on the quality discrepancy between the views. Finally, we obtain the optimal stock ranking list by optimizing the point-wise regression loss and the ranking-aware loss. We empirically compare TABLE method with state-of-the-art baselines using the publicly available dataset, S&P500. The experimental results demonstrate that TABLE method outperforms the baseline methods in terms of accuracy and investment revenue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆崧瀚发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
Lik发布了新的文献求助10
1秒前
天天快乐应助儒雅的书白采纳,获得10
1秒前
bkagyin应助chigga采纳,获得10
1秒前
mmx完成签到,获得积分10
2秒前
Lucas应助清新的沛蓝采纳,获得10
2秒前
BowieHuang应助灵巧的凝云采纳,获得10
2秒前
Di完成签到,获得积分10
3秒前
路人甲发布了新的文献求助10
3秒前
无极微光应助Liao采纳,获得20
3秒前
3秒前
3秒前
3秒前
4秒前
初雪应助Wendy采纳,获得10
5秒前
5秒前
薄荷发布了新的文献求助10
6秒前
悦耳雪巧完成签到 ,获得积分10
6秒前
7秒前
Yifan完成签到,获得积分10
7秒前
8秒前
科研小小白完成签到,获得积分20
8秒前
Loooong完成签到,获得积分0
8秒前
9秒前
Yuanyuan发布了新的文献求助10
9秒前
9秒前
彭于晏应助会咩的嘉人璐采纳,获得10
9秒前
9秒前
洁净如音完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
cy发布了新的文献求助10
10秒前
zhuzhu发布了新的文献求助10
10秒前
852应助我我我采纳,获得10
11秒前
嘻嘻哈哈小鱼完成签到,获得积分10
11秒前
11秒前
沈千越完成签到,获得积分20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774388
求助须知:如何正确求助?哪些是违规求助? 5617373
关于积分的说明 15435636
捐赠科研通 4906846
什么是DOI,文献DOI怎么找? 2640456
邀请新用户注册赠送积分活动 1588251
关于科研通互助平台的介绍 1543249