TABLE: Time-aware Balanced Multi-view Learning for stock ranking

表(数据库) 排名(信息检索) 计算机科学 库存(枪支) 机器学习 人工智能 数据挖掘 工程类 机械工程
作者
Ying Liu,Cai Xu,Long Chen,Meng Yan,Wei Zhao,Ziyu Guan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:303: 112424-112424 被引量:11
标识
DOI:10.1016/j.knosys.2024.112424
摘要

Stock ranking is a significant and challenging problem. In recent years, the use of multi-view data, such as price and tweet, for stock ranking has gained considerable attention in the research field. Most existing methods are performed in (some of) the 3 steps: 1) view-specific representation learning; 2) cross-view representation interaction; 3) multi-view representation fusion. Although these methods make breakthroughs in stock ranking, they often treat all views equally. This neglects the unbalanced phenomenon in multi-view stock data, i.e., the dimension of the text view may be extremely big compared with those of other views; the price view exhibits standard and high-quality data, whereas the text view contains noise and has irregular time intervals. To solve this, we propose a Time-Aware Balanced multi-view LEarning (TABLE) method. TABLE method consists of a view-specific learning stage and a multi-view fusion stage. In the first stage, we aim to improve the quality of the low-quality text view. We achieve this by attenuating the negative impact of irrelevant texts using a hierarchical temporal attention mechanism that captures text correlations. Additionally, we explicitly model the time irregularities between sequential texts. In the fusion stage, we address the dimensions unbalance problem by establishing a multi-view decision fusion paradigm by weighted averaging the view-specific stock predictions. These weights are dynamic and determined based on the quality discrepancy between the views. Finally, we obtain the optimal stock ranking list by optimizing the point-wise regression loss and the ranking-aware loss. We empirically compare TABLE method with state-of-the-art baselines using the publicly available dataset, S&P500. The experimental results demonstrate that TABLE method outperforms the baseline methods in terms of accuracy and investment revenue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
寻道图强应助YY采纳,获得30
刚刚
羊羊羊发布了新的文献求助10
1秒前
2秒前
南辞完成签到 ,获得积分20
3秒前
大大发布了新的文献求助30
3秒前
lucky完成签到,获得积分10
3秒前
3秒前
Sunny完成签到,获得积分10
4秒前
6秒前
6秒前
科目三应助一百度黑采纳,获得10
6秒前
6秒前
椰椰完成签到,获得积分10
7秒前
沉默襄发布了新的文献求助10
7秒前
Xiaopan完成签到 ,获得积分10
9秒前
开朗紫完成签到,获得积分10
9秒前
迪迦王完成签到,获得积分10
9秒前
大模型应助edtaa采纳,获得10
11秒前
unique发布了新的文献求助10
11秒前
11秒前
11秒前
随随发布了新的文献求助10
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
buqi发布了新的文献求助10
16秒前
FFFFFF发布了新的文献求助10
16秒前
一百度黑完成签到,获得积分10
17秒前
kdjc完成签到,获得积分10
18秒前
HF发布了新的文献求助10
18秒前
普鲁斯特完成签到,获得积分10
20秒前
赵十一完成签到,获得积分10
21秒前
今后应助我真的不是robot采纳,获得10
22秒前
自觉的绮烟完成签到,获得积分10
22秒前
22秒前
11发布了新的文献求助10
22秒前
垃圾智造者完成签到,获得积分10
23秒前
24秒前
天气很好我很好关注了科研通微信公众号
24秒前
缥缈凡旋完成签到,获得积分10
24秒前
buqi完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385