TABLE: Time-aware Balanced Multi-view Learning for stock ranking

表(数据库) 排名(信息检索) 计算机科学 库存(枪支) 机器学习 人工智能 数据挖掘 工程类 机械工程
作者
Ying Liu,Cai Xu,Long Chen,Meng Yan,Wei Zhao,Ziyu Guan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:303: 112424-112424 被引量:11
标识
DOI:10.1016/j.knosys.2024.112424
摘要

Stock ranking is a significant and challenging problem. In recent years, the use of multi-view data, such as price and tweet, for stock ranking has gained considerable attention in the research field. Most existing methods are performed in (some of) the 3 steps: 1) view-specific representation learning; 2) cross-view representation interaction; 3) multi-view representation fusion. Although these methods make breakthroughs in stock ranking, they often treat all views equally. This neglects the unbalanced phenomenon in multi-view stock data, i.e., the dimension of the text view may be extremely big compared with those of other views; the price view exhibits standard and high-quality data, whereas the text view contains noise and has irregular time intervals. To solve this, we propose a Time-Aware Balanced multi-view LEarning (TABLE) method. TABLE method consists of a view-specific learning stage and a multi-view fusion stage. In the first stage, we aim to improve the quality of the low-quality text view. We achieve this by attenuating the negative impact of irrelevant texts using a hierarchical temporal attention mechanism that captures text correlations. Additionally, we explicitly model the time irregularities between sequential texts. In the fusion stage, we address the dimensions unbalance problem by establishing a multi-view decision fusion paradigm by weighted averaging the view-specific stock predictions. These weights are dynamic and determined based on the quality discrepancy between the views. Finally, we obtain the optimal stock ranking list by optimizing the point-wise regression loss and the ranking-aware loss. We empirically compare TABLE method with state-of-the-art baselines using the publicly available dataset, S&P500. The experimental results demonstrate that TABLE method outperforms the baseline methods in terms of accuracy and investment revenue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuxuux发布了新的文献求助10
2秒前
wanci应助默默犀牛采纳,获得10
2秒前
梦桃完成签到 ,获得积分10
2秒前
徐什么宝发布了新的文献求助10
3秒前
刻苦向梦发布了新的文献求助10
3秒前
romeo发布了新的文献求助10
4秒前
4秒前
受伤白安发布了新的文献求助10
4秒前
JamesPei应助火速阿百川采纳,获得10
5秒前
丘比特应助liuyu0209采纳,获得10
5秒前
不安青牛应助玛卡采纳,获得10
6秒前
7秒前
7秒前
8秒前
852应助科研通管家采纳,获得30
9秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
NexusExplorer应助舍我其谁采纳,获得10
10秒前
金金发布了新的文献求助10
10秒前
隐形曼青应助李昕123采纳,获得10
11秒前
蓬蓬发布了新的文献求助10
11秒前
12秒前
hexy629发布了新的文献求助10
13秒前
123456完成签到,获得积分10
13秒前
13秒前
Tomyyh发布了新的文献求助10
14秒前
123456发布了新的文献求助10
14秒前
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781