TABLE: Time-aware Balanced Multi-view Learning for stock ranking

表(数据库) 排名(信息检索) 计算机科学 库存(枪支) 机器学习 人工智能 数据挖掘 工程类 机械工程
作者
Ying Liu,Cai Xu,Long Chen,Meng Yan,Wei Zhao,Ziyu Guan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:303: 112424-112424 被引量:11
标识
DOI:10.1016/j.knosys.2024.112424
摘要

Stock ranking is a significant and challenging problem. In recent years, the use of multi-view data, such as price and tweet, for stock ranking has gained considerable attention in the research field. Most existing methods are performed in (some of) the 3 steps: 1) view-specific representation learning; 2) cross-view representation interaction; 3) multi-view representation fusion. Although these methods make breakthroughs in stock ranking, they often treat all views equally. This neglects the unbalanced phenomenon in multi-view stock data, i.e., the dimension of the text view may be extremely big compared with those of other views; the price view exhibits standard and high-quality data, whereas the text view contains noise and has irregular time intervals. To solve this, we propose a Time-Aware Balanced multi-view LEarning (TABLE) method. TABLE method consists of a view-specific learning stage and a multi-view fusion stage. In the first stage, we aim to improve the quality of the low-quality text view. We achieve this by attenuating the negative impact of irrelevant texts using a hierarchical temporal attention mechanism that captures text correlations. Additionally, we explicitly model the time irregularities between sequential texts. In the fusion stage, we address the dimensions unbalance problem by establishing a multi-view decision fusion paradigm by weighted averaging the view-specific stock predictions. These weights are dynamic and determined based on the quality discrepancy between the views. Finally, we obtain the optimal stock ranking list by optimizing the point-wise regression loss and the ranking-aware loss. We empirically compare TABLE method with state-of-the-art baselines using the publicly available dataset, S&P500. The experimental results demonstrate that TABLE method outperforms the baseline methods in terms of accuracy and investment revenue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lzr发布了新的文献求助10
1秒前
李爱国应助彼岸采纳,获得10
2秒前
hhh关注了科研通微信公众号
2秒前
李健的粉丝团团长应助sss采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
幽默的访冬完成签到,获得积分10
4秒前
浮游应助无足鸟采纳,获得10
5秒前
科研通AI6应助百杜采纳,获得10
5秒前
犹豫的归尘完成签到,获得积分10
5秒前
CipherSage应助shaishai采纳,获得10
5秒前
耶斯发布了新的文献求助10
6秒前
刘佳慧完成签到,获得积分10
6秒前
likke发布了新的文献求助10
8秒前
博儒艾特发布了新的文献求助10
9秒前
9秒前
你好发布了新的文献求助10
9秒前
冷艳的半凡完成签到,获得积分10
10秒前
11秒前
hll关注了科研通微信公众号
11秒前
wu完成签到,获得积分10
11秒前
乐乐应助能干梦安采纳,获得10
12秒前
12秒前
刘佳慧发布了新的文献求助10
12秒前
save发布了新的文献求助10
13秒前
13秒前
今后应助LaffiteElla采纳,获得10
15秒前
藜誌完成签到,获得积分10
16秒前
16秒前
能干梦安完成签到,获得积分10
16秒前
haha完成签到,获得积分10
17秒前
岩下松风完成签到,获得积分10
17秒前
浮游应助shang采纳,获得10
19秒前
19秒前
19秒前
彼岸发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818