Physics-Informed Neural Network-Based Nonlinear Model Predictive Control for Automated Guided Vehicle Trajectory Tracking

弹道 人工神经网络 跟踪(教育) 非线性系统 模型预测控制 非线性模型 控制理论(社会学) 控制(管理) 控制工程 计算机科学 物理 人工智能 工程类 心理学 教育学 量子力学 天文
作者
Yinping Li,Li Liu
出处
期刊:World Electric Vehicle Journal [Multidisciplinary Digital Publishing Institute]
卷期号:15 (10): 460-460
标识
DOI:10.3390/wevj15100460
摘要

This paper proposes a nonlinear Model Predictive Control (MPC) method based on Physics-Informed Neural Networks (PINNs), aimed at enhancing the trajectory tracking performance of Automated Guided Vehicles (AGVs) in complex dynamic environments. Traditional physical models often face the challenges of computational inefficiency and insufficient control precision when dealing with complex dynamic systems. However, by integrating physical laws directly into the training process of neural networks, PINNs can effectively learn and capture the kinematic characteristics of vehicles, replacing traditional nonlinear ordinary differential equation models and thus significantly enhancing computational efficiency and control performance. During the model-training phase, this study further incorporates the Theory of Functional Connections (TFC) and adaptive loss balancing strategies to efficiently solve ODE problems without relying on numerical integration and optimize the control strategy. This combined approach not only reduces computational complexity, but also improves the robustness and precision of the control strategy in varying environments. Numerical simulations demonstrate that this method offers significant advantages in AGV trajectory-tracking tasks, manifested in higher computational efficiency and precise control performance. The proposal of the PINN-MPC method provides new theoretical support and innovative methods for real-time complex system control, with important research and application potential, and is expected to play a key role in future intelligent control systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助圣晟胜采纳,获得10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
Deiog关注了科研通微信公众号
2秒前
2秒前
3秒前
3秒前
今后应助小陈同学采纳,获得10
3秒前
时尚诗蕊发布了新的文献求助10
3秒前
高贵紫丝发布了新的文献求助10
3秒前
xzn1123应助木棉采纳,获得10
4秒前
5秒前
6秒前
无私的芹给彭半梦的求助进行了留言
6秒前
7秒前
7秒前
yy发布了新的文献求助10
7秒前
7秒前
8秒前
颜朗发布了新的文献求助10
8秒前
鳗鱼紫萱完成签到,获得积分10
8秒前
9秒前
9秒前
清秀的鲂完成签到,获得积分10
10秒前
10秒前
兮兮完成签到,获得积分10
11秒前
11秒前
12秒前
杰尼龟完成签到,获得积分10
13秒前
胖胖鱼发布了新的文献求助10
13秒前
14秒前
酷丫发布了新的文献求助10
14秒前
14秒前
颜朗完成签到,获得积分10
15秒前
ding完成签到,获得积分10
16秒前
领导范儿应助jun_shen采纳,获得30
16秒前
可可发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350