FIDMT-GhostNet: a lightweight density estimation model for wheat ear counting

计算机科学 增采样 人工智能 普通小麦 特征(语言学) 模式识别(心理学) 数学 图像(数学) 生物化学 化学 语言学 哲学 染色体 基因
作者
Baohua Yang,Runchao Chen,Zhiwei Gao,Hongbo Zhi
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fpls.2024.1435042
摘要

Wheat is one of the important food crops in the world, and the stability and growth of wheat production have a decisive impact on global food security and economic prosperity. Wheat counting is of great significance for agricultural management, yield prediction and resource allocation. Research shows that the wheat ear counting method based on deep learning has achieved remarkable results and the model accuracy is high. However, the complex background of wheat fields, dense wheat ears, small wheat ear targets, and different sizes of wheat ears make the accurate positioning and counting of wheat ears still face great challenges. To this end, an automatic positioning and counting method of wheat ears based on FIDMT-GhostNet (focal inverse distance transform maps - GhostNet) is proposed. Firstly, a lightweight wheat ear counting network using GhostNet as the feature extraction network is proposed, aiming to obtain multi-scale wheat ear features. Secondly, in view of the difficulty in counting caused by dense wheat ears, the point annotation-based network FIDMT (focal inverse distance transform maps) is introduced as a baseline network to improve counting accuracy. Furthermore, to address the problem of less feature information caused by the small ear of wheat target, a dense upsampling convolution module is introduced to improve the resolution of the image and extract more detailed information. Finally, to overcome background noise or wheat ear interference, a local maximum value detection strategy is designed to realize automatic processing of wheat ear counting. To verify the effectiveness of the FIDMT-GhostNet model, the constructed wheat image data sets including WEC, WEDD and GWHD were used for training and testing. Experimental results show that the accuracy of the wheat ear counting model reaches 0.9145, and the model parameters reach 8.42M, indicating that the model FIDMT-GhostNet proposed in this study has good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
哭泣火车发布了新的文献求助10
2秒前
华仔应助llllwwww采纳,获得10
2秒前
3秒前
jiang完成签到,获得积分10
3秒前
萧水白应助ljw采纳,获得10
3秒前
JamesPei应助超帅的老鼠采纳,获得10
3秒前
凄凄切切完成签到,获得积分20
4秒前
脑洞疼应助小s采纳,获得10
4秒前
Nemo1234发布了新的文献求助10
4秒前
现在到未来完成签到,获得积分10
4秒前
今后应助uwasa采纳,获得10
5秒前
Orange应助太阳采纳,获得10
5秒前
lyn完成签到,获得积分10
6秒前
ding应助en采纳,获得30
6秒前
bonnieeee777完成签到,获得积分10
6秒前
7秒前
Nan完成签到,获得积分10
7秒前
1234完成签到,获得积分20
7秒前
传奇3应助哭泣火车采纳,获得10
8秒前
啥也看不懂完成签到,获得积分10
9秒前
XX发布了新的文献求助20
9秒前
ChemPhys完成签到 ,获得积分10
10秒前
10秒前
10秒前
彭于晏应助Nemo1234采纳,获得10
10秒前
11秒前
SciGPT应助ANNNNN采纳,获得10
11秒前
12秒前
领导范儿应助圆圆方方采纳,获得10
12秒前
内含子发布了新的文献求助10
13秒前
gudujian870928完成签到,获得积分10
14秒前
牛牛要当院士喽完成签到,获得积分10
14秒前
陈军完成签到,获得积分0
14秒前
奋斗的妙菱完成签到,获得积分20
15秒前
llllwwww发布了新的文献求助10
15秒前
明亮的冰颜完成签到,获得积分10
16秒前
hq6045x完成签到,获得积分10
16秒前
小伊完成签到,获得积分10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258606
求助须知:如何正确求助?哪些是违规求助? 2900388
关于积分的说明 8310270
捐赠科研通 2569682
什么是DOI,文献DOI怎么找? 1395863
科研通“疑难数据库(出版商)”最低求助积分说明 653340
邀请新用户注册赠送积分活动 631221