FIDMT-GhostNet: a lightweight density estimation model for wheat ear counting

计算机科学 增采样 人工智能 普通小麦 特征(语言学) 模式识别(心理学) 数学 图像(数学) 染色体 语言学 生物化学 基因 哲学 化学
作者
Baohua Yang,Runchao Chen,Zhiwei Gao,Hongbo Zhi
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fpls.2024.1435042
摘要

Wheat is one of the important food crops in the world, and the stability and growth of wheat production have a decisive impact on global food security and economic prosperity. Wheat counting is of great significance for agricultural management, yield prediction and resource allocation. Research shows that the wheat ear counting method based on deep learning has achieved remarkable results and the model accuracy is high. However, the complex background of wheat fields, dense wheat ears, small wheat ear targets, and different sizes of wheat ears make the accurate positioning and counting of wheat ears still face great challenges. To this end, an automatic positioning and counting method of wheat ears based on FIDMT-GhostNet (focal inverse distance transform maps - GhostNet) is proposed. Firstly, a lightweight wheat ear counting network using GhostNet as the feature extraction network is proposed, aiming to obtain multi-scale wheat ear features. Secondly, in view of the difficulty in counting caused by dense wheat ears, the point annotation-based network FIDMT (focal inverse distance transform maps) is introduced as a baseline network to improve counting accuracy. Furthermore, to address the problem of less feature information caused by the small ear of wheat target, a dense upsampling convolution module is introduced to improve the resolution of the image and extract more detailed information. Finally, to overcome background noise or wheat ear interference, a local maximum value detection strategy is designed to realize automatic processing of wheat ear counting. To verify the effectiveness of the FIDMT-GhostNet model, the constructed wheat image data sets including WEC, WEDD and GWHD were used for training and testing. Experimental results show that the accuracy of the wheat ear counting model reaches 0.9145, and the model parameters reach 8.42M, indicating that the model FIDMT-GhostNet proposed in this study has good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂雪一完成签到,获得积分10
1秒前
rudjs发布了新的文献求助10
3秒前
bobo发布了新的文献求助10
3秒前
无幻完成签到 ,获得积分10
3秒前
大模型应助迷路的煎蛋采纳,获得10
3秒前
Iron_five完成签到 ,获得积分10
5秒前
Res完成签到,获得积分10
5秒前
正己化人发布了新的文献求助10
5秒前
平淡的藏花完成签到 ,获得积分10
6秒前
Pauline完成签到 ,获得积分10
7秒前
7秒前
白衣修身完成签到,获得积分10
7秒前
晨曦发布了新的文献求助10
8秒前
胡晓雨完成签到,获得积分10
8秒前
水星记完成签到,获得积分10
10秒前
10秒前
rudjs完成签到,获得积分10
11秒前
领导范儿应助乔沃维奇采纳,获得10
11秒前
yuuka发布了新的文献求助10
11秒前
桑晒包完成签到,获得积分10
12秒前
勤奋花瓣完成签到 ,获得积分10
12秒前
zsyhcl应助胡萝卜采纳,获得10
12秒前
科研通AI6应助胡萝卜采纳,获得10
12秒前
orixero应助胡萝卜采纳,获得10
12秒前
愉快书琴完成签到,获得积分10
13秒前
xin完成签到 ,获得积分10
14秒前
撸毛完成签到,获得积分10
14秒前
15秒前
15秒前
屿溡发布了新的文献求助10
16秒前
科研摆渡人完成签到,获得积分10
16秒前
yuuka完成签到,获得积分10
18秒前
科研通AI6应助撸毛采纳,获得10
18秒前
JILIGULU完成签到,获得积分10
19秒前
时尚大白完成签到 ,获得积分10
21秒前
23秒前
晨曦完成签到,获得积分10
26秒前
甜蜜的振家完成签到,获得积分10
27秒前
liu发布了新的文献求助10
28秒前
Eaven完成签到,获得积分10
30秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378909
求助须知:如何正确求助?哪些是违规求助? 4503292
关于积分的说明 14015481
捐赠科研通 4412031
什么是DOI,文献DOI怎么找? 2423615
邀请新用户注册赠送积分活动 1416548
关于科研通互助平台的介绍 1394032