A better strategy: using green GDP to measure economic health

度量(数据仓库) 经济 自然资源经济学 业务 计量经济学 环境科学 计算机科学 数据挖掘
作者
Xinhao Zheng,Yuexin Chen
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fenvs.2024.1459764
摘要

Introduction Gross Domestic Product (GDP) is the most well-known and widely used measure of a country’s economic health. However, GDP fails to account for the depletion of natural resources and the environmental damage that occurs in the pursuit of economic growth, leading to an incomplete and potentially misleading picture of a nation’s well-being. To address this shortcoming, Green GDP (GGDP) is proposed as a more comprehensive indicator that incorporates environmental factors into the economic assessment. This study builds on extensive literature reviews, internationally accepted GGDP accounting methods, and scholarly research to propose a new GGDP calculation model that better reflects a country’s sustainable development. Methods The proposed GGDP model is divided into two main components: natural resource loss and environmental pollution loss. Each component is further broken down into primary factors that are condensed into 13 sub-criteria reflecting a country’s capacity for sustainable development. Principal Component Analysis (PCA) is utilized to identify the most representative factors from these sub-criteria and to analyze the relationships among GGDP, these factors, and global mean temperature. Additionally, the Integrated Environmental Sustainability Index (IESI) is used to develop a global temperature mitigation prediction model, which considers the impacts of epidemics, sea and land temperatures, and variations in climate across different regions. Results The analysis shows a 74% probability that positive GGDP growth correlates with temperature changes over a 50-year period, indicating that economic activities measured by GGDP are linked to climate change. The GGDP model reveals significant differences between global GDP and Green GDP, with the latter growing at a much slower rate. This slower growth of Green GDP is primarily due to the declining share of GDP from natural resource-dependent activities, which has fallen from 90% in the 1970s to 80% in 2020. This trend underscores the increasing gap between traditional economic growth and sustainable development, suggesting that as countries continue to rely on natural resources, their overall ecological efficiency declines, environmental pressures increase, and the potential for long-term sustainable development diminishes. Discussion The findings demonstrate that all factors within the GGDP model are proportional to global temperature, underscoring the significant impact that natural resource utilization and pollution emissions have on economic growth and climate change. The study further evaluates global sustainable development by considering both economic and environmental perspectives. Using Brazil as a case study, the model is applied to assess the values of each component within the GGDP framework, providing a comprehensive analysis of the country’s sustainable development challenges and potential solutions. This approach establishes a method for assessing sustainable development that can be adapted for use in other countries, offering a path forward for integrating environmental considerations into economic policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uuu发布了新的文献求助10
1秒前
桐桐应助geologist采纳,获得10
1秒前
田様应助耍酷的母鸡采纳,获得10
1秒前
天地不语完成签到,获得积分10
4秒前
LuKa77发布了新的文献求助10
4秒前
geologist给geologist的求助进行了留言
7秒前
打地鼠工人完成签到,获得积分10
9秒前
LuKa77完成签到,获得积分10
11秒前
12秒前
热爱科研的小白鼠完成签到,获得积分20
14秒前
Lucas应助dream采纳,获得10
14秒前
李健应助王木木采纳,获得10
14秒前
14秒前
领导范儿应助阔达静曼采纳,获得10
15秒前
HaroldNguyen完成签到,获得积分10
16秒前
16秒前
dddmk发布了新的文献求助10
17秒前
FashionBoy应助lll采纳,获得10
17秒前
葫芦娃发布了新的文献求助10
19秒前
cbx发布了新的文献求助10
20秒前
YG发布了新的文献求助10
21秒前
GY完成签到 ,获得积分10
21秒前
姜姜完成签到,获得积分10
24秒前
糊涂的板凳完成签到,获得积分10
25秒前
yjj6809完成签到,获得积分10
25秒前
25秒前
正直小懒猪完成签到 ,获得积分10
26秒前
李健的粉丝团团长应助cbx采纳,获得10
26秒前
健达完成签到,获得积分10
27秒前
mani完成签到,获得积分10
27秒前
28秒前
研友_Z30GJ8发布了新的文献求助10
29秒前
科研通AI2S应助Young采纳,获得10
30秒前
30秒前
dream发布了新的文献求助10
31秒前
LindonVan完成签到,获得积分10
31秒前
Hello应助咯咚采纳,获得10
31秒前
葫芦娃完成签到,获得积分10
31秒前
落忆发布了新的文献求助10
33秒前
cdercder应助糊涂的板凳采纳,获得10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733184
求助须知:如何正确求助?哪些是违规求助? 3277324
关于积分的说明 10001740
捐赠科研通 2993084
什么是DOI,文献DOI怎么找? 1642535
邀请新用户注册赠送积分活动 780493
科研通“疑难数据库(出版商)”最低求助积分说明 748861