欧姆接触
材料科学
共价键
悬空债券
量子隧道
半导体
范德瓦尔斯力
费米能级
凝聚态物理
金属键合
金属
纳米技术
光电子学
分子
硅
物理
电子
图层(电子)
量子力学
冶金
作者
Wenchao Shan,Anqi Shi,Zhengyang Xin,Xiuyun Zhang,Bing Wang,Yongtao Li,Xianghong Niu
标识
DOI:10.1002/adfm.202412773
摘要
Abstract 2D metal and semiconductor materials provide a promising solution to realize Ohmic contacts by suppressing the strong Fermi level pinning (FLP) effect due to without dangling bonds. However, the 2D metal‐semiconductor Van der Waals (vdW) interfaces induce an inevitable tunnel barrier, significantly restraining the injection of charge carriers into the conduction channel. Herein, by replacing the vdW bond with the covalent bond in interfaces, the Ohmic and tunneling‐barrier‐inhibition contacts are realized simultaneously based on the 2D XSi 2 N 4 (X = Cr, Hf, Mo, Ti, V, Zr) semiconductor and the 2D Mxene metal family. Taking 60 2D Mxene‐XSi 2 N 4 contacts as examples, although the vdW‐type contacts exhibit Ohmic contacts, the tunneling probability (P TB ) can be as low as 0.4%, while the P TB can increase to 88.09% by removing the Mxene terminations at the adjacent interface to form the covalent bond. The weak FLP and Ohmic contacts are retained at covalent bond interfaces since the outlying Si─N sublayer protects the band‐edge electronic states of XSi 2 N 4 semiconductors. This work provides a straightforward strategy for advancing high‐performance and energy‐efficient 2D electronic nanodevices.
科研通智能强力驱动
Strongly Powered by AbleSci AI