An Explainable Unified Framework of Spatio-Temporal Coupling Learning with Application to Dynamic Brain Functional Connectivity Analysis

计算机科学 功能连接 人工智能 动态功能连接 联轴节(管道) 神经科学 模式识别(心理学) 心理学 机械工程 工程类
作者
Bin Gao,Aiju Yu,Chen Qiao,Vince D. Calhoun,Julia M. Stephen,Tony W. Wilson,Yu‐Ping Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3467384
摘要

Time-series data such as fMRI and MEG carry a wealth of inherent spatio-temporal coupling relationship, and their modeling via deep learning is essential for uncovering biological mechanisms. However, current machine learning models for mining spatio-temporal information usually overlook this intrinsic coupling association, in addition to poor explainability. In this paper, we present an explainable learning framework for spatio-temporal coupling. Specifically, this framework constructs a deep learning network based on spatio-temporal correlation, which can well integrate the time-varying coupled relationships between node representation and inter-node connectivity. Furthermore, it explores spatio-temporal evolution at each time step, providing a better explainability of the analysis results. Finally, we apply the proposed framework to brain dynamic functional connectivity (dFC) analysis. Experimental results demonstrate that it can effectively capture the variations in dFC during brain development and the evolution of spatio-temporal information at the resting state. Two distinct developmental functional connectivity (FC) patterns are identified. Specifically, the connectivity among regions related to emotional regulation decreases, while the connectivity associated with cognitive activities increases. In addition, children and young adults display notable cyclic fluctuations in resting-state brain dFC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沧海泪发布了新的文献求助10
1秒前
2秒前
112233发布了新的文献求助10
2秒前
吃猫的鱼发布了新的文献求助10
3秒前
3秒前
3秒前
猪皮菠萝包完成签到,获得积分10
4秒前
DCW发布了新的文献求助10
4秒前
氨甲酰磷酸完成签到,获得积分10
4秒前
4秒前
绵绵球应助charles采纳,获得20
5秒前
6秒前
oo发布了新的文献求助10
6秒前
7秒前
yyyr完成签到,获得积分10
7秒前
xxxxxl完成签到,获得积分10
7秒前
8秒前
liutengfei123发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
cherlie完成签到,获得积分10
11秒前
默默含卉发布了新的文献求助10
11秒前
DCW完成签到,获得积分10
11秒前
牛牛牛应助cooot采纳,获得10
11秒前
打打应助标致的白桃采纳,获得10
12秒前
12秒前
13秒前
13秒前
火龙果大王完成签到,获得积分10
13秒前
13秒前
在水一方应助Yuuuu采纳,获得10
14秒前
ttnnn发布了新的文献求助10
15秒前
贝尔完成签到,获得积分20
15秒前
HHMTT完成签到,获得积分10
15秒前
Billy应助dsfsd采纳,获得30
15秒前
jukongka完成签到,获得积分0
16秒前
啦啦啦完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958850
求助须知:如何正确求助?哪些是违规求助? 3505102
关于积分的说明 11122496
捐赠科研通 3236558
什么是DOI,文献DOI怎么找? 1788899
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802794