计算机科学
功能连接
人工智能
动态功能连接
联轴节(管道)
神经科学
模式识别(心理学)
心理学
机械工程
工程类
作者
Bin Gao,Aiju Yu,Chen Qiao,Vince D. Calhoun,Julia M. Stephen,Tony W. Wilson,Yu‐Ping Wang
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3467384
摘要
Time-series data such as fMRI and MEG carry a wealth of inherent spatio-temporal coupling relationship, and their modeling via deep learning is essential for uncovering biological mechanisms. However, current machine learning models for mining spatio-temporal information usually overlook this intrinsic coupling association, in addition to poor explainability. In this paper, we present an explainable learning framework for spatio-temporal coupling. Specifically, this framework constructs a deep learning network based on spatio-temporal correlation, which can well integrate the time-varying coupled relationships between node representation and inter-node connectivity. Furthermore, it explores spatio-temporal evolution at each time step, providing a better explainability of the analysis results. Finally, we apply the proposed framework to brain dynamic functional connectivity (dFC) analysis. Experimental results demonstrate that it can effectively capture the variations in dFC during brain development and the evolution of spatio-temporal information at the resting state. Two distinct developmental functional connectivity (FC) patterns are identified. Specifically, the connectivity among regions related to emotional regulation decreases, while the connectivity associated with cognitive activities increases. In addition, children and young adults display notable cyclic fluctuations in resting-state brain dFC.
科研通智能强力驱动
Strongly Powered by AbleSci AI