Multi-objective optimization design of NPR protection shell for hydrogen storage tank

储罐 壳体(结构) 氢气储存 工程类 结构工程 计算机科学 机械工程 化学 有机化学
作者
Guan Zhou,Yuankui Niu,Jiale Zhao,Yuanlong Wang
出处
期刊:Mechanics of Advanced Materials and Structures [Taylor & Francis]
卷期号:: 1-14 被引量:2
标识
DOI:10.1080/15376494.2024.2382360
摘要

In order to improve the safety of on-board hydrogen storage tanks during collision, a protective shell based on a negative Poisson's ratio (NPR) core is designed in this paper. After analyzing and comparing the crashworthiness of three typical honeycomb structures, the concave hexagonal negative Poisson's ratio honeycomb is selected as the energy-absorbing inner core of the hydrogen storage tank protection structure. The sensitivity analysis of the structural parameters of the NPR shell is conducted through orthogonal tests to identify parameters with a significant impact on crash performance. These parameters are then used as experimental variables for subsequent optimization design. Subsequently, a response surface approximation model between the optimization objective and the structural parameters is established based on the response surface method. Finally, the adaptive simulated annealing algorithm (ASA), neighborhood cultivation genetic algorithm (NCGA), and non-dominated sorting genetic algorithm-II (NSGA-II) are used to optimize the structural parameters, and the optimization results are verified by the whole-vehicle crash simulation. The simulation results demonstrate that all three algorithms achieve better optimization results, among which NCGA is more advantageous in improving the overall performance of the protective shell. After NCGA optimization, the specific energy absorption of the protective shell increases by 19.75%, the maximum collision force of the rigid wall decreases by 23.63%, and the maximum stress of the hydrogen storage tank body decreases by 22.77%. These findings indicate that the designed protection shell effectively improves the crashworthiness of the hydrogen storage tank during collisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanwan发布了新的文献求助30
刚刚
陈打铁完成签到,获得积分10
刚刚
刚刚
刚刚
所所应助CHOU采纳,获得10
1秒前
1秒前
2秒前
SciGPT应助文献查找采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
Lucas应助等待宛白采纳,获得10
2秒前
3秒前
YSL发布了新的文献求助10
3秒前
4秒前
4秒前
鸟鸣完成签到,获得积分10
5秒前
frx1996完成签到,获得积分20
5秒前
5秒前
5秒前
吴浩宇发布了新的文献求助10
6秒前
与秋逐鹿发布了新的文献求助10
6秒前
英姑应助三七四十三采纳,获得10
7秒前
8秒前
城南发布了新的文献求助10
8秒前
8秒前
鸟鸣发布了新的文献求助10
9秒前
llw发布了新的文献求助10
9秒前
songyan完成签到,获得积分10
9秒前
阿乾发布了新的文献求助10
10秒前
10秒前
大力飞扬完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
邹鋬发布了新的文献求助10
13秒前
研友_5Y9Z75完成签到 ,获得积分0
13秒前
13秒前
秀丽焦完成签到 ,获得积分10
14秒前
shinn完成签到,获得积分10
14秒前
善学以致用应助姜梦瑶采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605334
求助须知:如何正确求助?哪些是违规求助? 4013256
关于积分的说明 12426716
捐赠科研通 3693913
什么是DOI,文献DOI怎么找? 2036704
邀请新用户注册赠送积分活动 1069652
科研通“疑难数据库(出版商)”最低求助积分说明 953966