Dynamic non-constraint ensemble model for probabilistic wind power and wind speed forecasting

风速 概率逻辑 概率预测 约束(计算机辅助设计) 风力发电 风电预测 计算机科学 功率(物理) 气象学 工程类 电力系统 人工智能 物理 电气工程 量子力学 机械工程
作者
Yun Wang,Houhua Xu,Runmin Zou,Fan Zhang,Qinghua Hu
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:204: 114781-114781
标识
DOI:10.1016/j.rser.2024.114781
摘要

Accurate and reliable probabilistic wind power and wind speed forecasts provide large amounts of uncertainty information, which is important for wind farm management and grid dispatch optimization. In this study, a dynamic non-constraint ensemble model is proposed to generate probabilistic wind power and wind speed forecasts. First, four deep Gaussian neural networks (DGNNs) based on popular time series forecasting approaches and the maximum likelihood estimation-based loss function are designed to generate base probabilistic forecasts in the ensemble model. Second, to consider the overall uncertainty of base probabilistic forecasts, a novel ensemble strategy for probabilistic forecasting is derived based on the probability density function of the weighted sum of finite Gaussian random variables. Third, to obtain the ensemble weights for different base probabilistic forecasts, a dynamic non-constraint weight learning model, containing quantile function, convolutional neural network, and channel attention, is proposed to generate dynamic non-constraint ensemble weights. In addition, the maximal information coefficient, which measures the linear and nonlinear relationship between the historical wind data and the target, is used for selecting the optimal input length. The experimental results from four real-world wind datasets demonstrate that the proposed ensemble model achieves exceptional accuracy in probabilistic wind power and wind speed forecasting. It outperforms DGNNs by an average improvement of 4.9325 % in pinball loss and surpasses Gaussian process regression by 16.6382 %. The effectiveness of utilizing non-constraint ensemble weights is supported by the results obtained with different weight constraints. Furthermore, hypothesis testing further confirms the overall effectiveness of the proposed ensemble model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分20
刚刚
柔弱小猫咪完成签到,获得积分10
1秒前
科研通AI2S应助羊羊采纳,获得10
1秒前
2秒前
lxd应助无心的青槐采纳,获得10
2秒前
星海梦幻发布了新的文献求助10
2秒前
shelia发布了新的文献求助10
2秒前
2秒前
彭于晏应助如初采纳,获得10
3秒前
3秒前
科研通AI5应助CMJ采纳,获得10
3秒前
吱吱吱发布了新的文献求助20
4秒前
4秒前
4秒前
缓慢的翠琴完成签到,获得积分10
4秒前
SHUI-YM完成签到,获得积分10
5秒前
搜集达人应助woodheart采纳,获得30
5秒前
5秒前
11111发布了新的文献求助10
6秒前
田様应助前往宇宙尽头采纳,获得10
6秒前
6秒前
一棵树完成签到,获得积分10
6秒前
zepho发布了新的文献求助10
7秒前
西柚发布了新的文献求助10
7秒前
小岛上的赞助滑手完成签到 ,获得积分10
7秒前
清秀伟宸完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
善学以致用应助whitedawn采纳,获得10
8秒前
8秒前
馒头发布了新的文献求助10
8秒前
香蕉觅云应助ghroth采纳,获得10
9秒前
星空舒完成签到,获得积分10
9秒前
9秒前
瑞曦完成签到,获得积分10
9秒前
充电宝应助爱听歌蜗牛采纳,获得10
10秒前
神勇砖头发布了新的文献求助10
10秒前
称心剑鬼发布了新的文献求助10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559395
求助须知:如何正确求助?哪些是违规求助? 3134035
关于积分的说明 9405099
捐赠科研通 2834084
什么是DOI,文献DOI怎么找? 1557841
邀请新用户注册赠送积分活动 727741
科研通“疑难数据库(出版商)”最低求助积分说明 716399