Label-Aware Dual Graph Neural Networks for Multi-Label Fundus Image Classification

计算机科学 人工智能 对偶(语法数字) 模式识别(心理学) 图形 上下文图像分类 人工神经网络 计算机视觉 图像(数学) 理论计算机科学 艺术 文学类
作者
Yanbei Liu,Xinwen Peng,Xin Wei,Lei Geng,Fang Zhang,Zhitao Xiao,Jerry Chun‐Wei Lin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/jbhi.2024.3457232
摘要

Fundus disease is a complex and universal disease involving a variety of pathologies. Its early diagnosis using fundus images can effectively prevent further diseases and provide targeted treatment plans for patients. Recent deep learning models for classification of this disease are gradually emerging as a critical research field, which is attracting widespread attention. However, in practice, most of the existing methods only focus on local visual cues of a single image, and ignore the underlying explicit interaction similarity between subjects and correlation information among pathologies in fundus diseases. In this paper, we propose a novel label-aware dual graph neural networks for multi-label fundus image classification that consists of population-based graph representation learning and pathology-based graph representation learning modules. Specifically, we first construct a population-based graph by integrating image features and non-image information to learn patient's representations by incorporating associations between subjects. Then, we represent pathologies as a sparse graph where its nodes are associated with pathology-based feature vectors and the edges correspond to probability of the co-occurrence of labels to generate a set of classifier scores by the propagation of multi-layer graph information. Finally, our model can adaptively recalibrate multi-label outputs. Detailed experiments and analysis of our results show the effectiveness of our method compared with state-of-the-art multi-label fundus image classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qianchimo完成签到 ,获得积分10
刚刚
ben完成签到,获得积分10
刚刚
谢谢发布了新的文献求助10
1秒前
1秒前
xng发布了新的文献求助10
2秒前
逸风望完成签到,获得积分10
3秒前
3秒前
SYLH应助123采纳,获得10
3秒前
龙卷风摧毁停车场完成签到,获得积分10
3秒前
十一口衣完成签到,获得积分10
4秒前
Eileen完成签到,获得积分10
4秒前
李健应助scl123采纳,获得10
4秒前
1565532470完成签到,获得积分10
4秒前
健壮不斜完成签到 ,获得积分10
5秒前
坦率绮山完成签到 ,获得积分10
5秒前
兰格格完成签到,获得积分10
5秒前
任我行完成签到,获得积分10
5秒前
小蘑菇应助如果我沉默采纳,获得10
5秒前
Gao_Z_X完成签到 ,获得积分10
5秒前
想个名字发布了新的文献求助30
5秒前
柴胡完成签到,获得积分10
5秒前
强强强强完成签到,获得积分10
5秒前
5秒前
Zo发布了新的文献求助10
6秒前
卡里的乏味完成签到,获得积分10
7秒前
小陈完成签到,获得积分10
8秒前
星辰大海应助南风喜欢采纳,获得10
9秒前
科研通AI2S应助bing采纳,获得10
10秒前
科研通AI2S应助bing采纳,获得10
10秒前
10秒前
new_vision完成签到,获得积分10
10秒前
园艺小学生完成签到,获得积分10
10秒前
李爱国应助forg采纳,获得10
11秒前
Sissi完成签到,获得积分10
12秒前
aibiotech完成签到,获得积分10
12秒前
12秒前
xng完成签到,获得积分10
13秒前
13秒前
Seven完成签到,获得积分10
14秒前
邵初蓝完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912