偏肺病毒
生物
病毒学
清脆的
变性肺病毒
计算生物学
呼吸道感染
遗传学
基因
呼吸系统
解剖
作者
Yao Du,Xiaorong Liu,Hongdan Gao,Xiaoqian Liu,Meng Huang,Qiang Chai,Zhihao Xing,Shouxin Zhang,Dongli Ma
标识
DOI:10.1016/j.jviromet.2024.115001
摘要
Human metapneumovirus (HMPV) is a common pathogen that can cause acute respiratory tract infections and is prevalent worldwide. There is yet no effective vaccine or specific treatment for HMPV. Early, rapid, and accurate detection is essential to treat the disease and control the spread of infection. In this study, we created the One-tube assay by combining Reverse Transcription-Recombinase Polymerase Amplification (RT-RPA) with the CRISPR/Cas12a system. By targeting the nucleoprotein (N) gene of HMPV to design specific primers and CRISPR RNAs (crRNAs), combining RT-RPA and CRISPR/Cas12a, established the One-tube assay. Meanwhile, the reaction conditions of the One-tube assay were optimized to achieve rapid and visual detection of HMPV. This assay could detect HMPV at 1 copy/μL in 30 min, without cross-reactivity with nine other respiratory pathogens. We validated the detection performance using clinical specimens and showed that the coincidence rate was 98.53 %,compared to the quantitative reverse-transcription polymerase chain reaction. The One-tube assay reduced the detection time and simplified the manual operation, while maintaining the detection performance and providing a new platform for HMPV detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI