Selective inhibition of overexpressed ATP binding cassette (ABC) transporters is an attractive approach to enhancing the efficacy of chemotherapeutics in multidrug resistant cancers. Previously, we reported that the cancer sensitizing effect of deazaflavin analogs, an important chemotype for developing combination treatments with topoisomerase II (TOP2) poisons, is associated with increased intracellular drug accumulation. Here we report the characterization of ZW-1226, a deazaflavin analog, as a potent inhibitor of multidrug resistance-associated protein 1 (MRP1). Specifically, ZW-1226 inhibited MRP1 with a 16-fold higher potency than the most widely used positive control MK-571 in vesicular transport assay and displayed excellent selectivity indices exceeding 100 over other major ABC transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), MRP2 and MRP3. Mechanistically, we revealed that its MRP1 inhibitory action requires the participation of GSH. In chemo-sensitization test, ZW-1226 fully reversed the MRP1-mediated drug resistance to TOP2 poisons etoposide (ETP) and doxorubicin (DOX) in H69AR cells and conferred CC