Hybrid AI-based 4D Trajectory Management System for Dense Low Altitude Operations and Urban Air Mobility

空中交通管制 背景(考古学) 计算机科学 交通拥挤 低空 国家空域系统 空中交通管理 运输工程 航空 高度(三角形) 工程类 航空航天工程 几何学 数学 生物 古生物学
作者
Yibing Xie,Alessandro Gardi,Man Liang,Roberto Sabatini
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:153: 109422-109422
标识
DOI:10.1016/j.ast.2024.109422
摘要

Urban Air Mobility (UAM) has emerged as a promising solution to address some of the challenges of transportation congestion and associated pollution, especially in large cities. However, the development of drone transportation and UAM services is limited by the capacity of the low altitude airspace where these new vehicles will operate. Without suitable regulatory advancements and associated traffic management systems, air traffic in the densest low-altitude sectors may incur congestion, which, in addition to affecting operational efficiency, can increase systemic risk and fuel emergency occurrences, thereby affecting the safety of people and property in the air and on the ground. To address these challenges, this study aims to develop an intelligent Uncrewed Aircraft Traffic Management (UTM) system that leverages the complementary strengths of metaheuristic and machine learning algorithms for an effective management of dense low altitude airspace. The UTM system determines time-based three-dimensional airspace Demand-Capacity Balancing (DCB) solutions by processing real-time data updates and dynamically replanning flight paths and DCB decisions in any given context, while also providing UAM operators with relevant inputs for autonomous decision-making. Simulation-based verification activities in representative conditions show that the proposed UTM system has the ability to effectively resolve overload instances and minimize potential conflicts in low-altitude airspace, with an operationally acceptable running time. We conclude that the proposed hybrid algorithm can support a successful implementation of UAM services in and around cities, and it has high potential to address critical airspace resource constraints also in traditional Air Traffic Flow Management (ATFM).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwydx发布了新的文献求助10
刚刚
苟子完成签到,获得积分10
1秒前
1秒前
汉堡包应助五等分的商鞅采纳,获得10
1秒前
qiqi完成签到,获得积分10
2秒前
2秒前
3秒前
123456发布了新的文献求助10
3秒前
领导范儿应助低空飞行采纳,获得10
4秒前
4秒前
4秒前
5秒前
Hello应助清爽的晓啸采纳,获得10
5秒前
5秒前
5秒前
知非发布了新的文献求助10
6秒前
YAN完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
rs完成签到,获得积分10
7秒前
好运莲莲完成签到,获得积分10
8秒前
自由小蚂蚁完成签到,获得积分10
8秒前
8秒前
9秒前
weiba发布了新的文献求助10
9秒前
李健应助HTH采纳,获得10
9秒前
9秒前
Momomo应助望安采纳,获得10
9秒前
净心发布了新的文献求助10
10秒前
11秒前
初空月儿发布了新的文献求助10
11秒前
吃瓜少女发布了新的文献求助30
12秒前
12秒前
FashionBoy应助ll采纳,获得10
12秒前
大胆的琦完成签到,获得积分10
12秒前
杜熙诺完成签到,获得积分10
13秒前
季同学关注了科研通微信公众号
13秒前
13秒前
13秒前
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704391
求助须知:如何正确求助?哪些是违规求助? 5157712
关于积分的说明 15242178
捐赠科研通 4858489
什么是DOI,文献DOI怎么找? 2607261
邀请新用户注册赠送积分活动 1558251
关于科研通互助平台的介绍 1516075