Hybrid AI-based 4D Trajectory Management System for Dense Low Altitude Operations and Urban Air Mobility

空中交通管制 背景(考古学) 计算机科学 交通拥挤 低空 国家空域系统 空中交通管理 运输工程 航空 高度(三角形) 工程类 航空航天工程 几何学 数学 生物 古生物学
作者
Yibing Xie,Alessandro Gardi,Man Liang,Roberto Sabatini
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:153: 109422-109422
标识
DOI:10.1016/j.ast.2024.109422
摘要

Urban Air Mobility (UAM) has emerged as a promising solution to address some of the challenges of transportation congestion and associated pollution, especially in large cities. However, the development of drone transportation and UAM services is limited by the capacity of the low altitude airspace where these new vehicles will operate. Without suitable regulatory advancements and associated traffic management systems, air traffic in the densest low-altitude sectors may incur congestion, which, in addition to affecting operational efficiency, can increase systemic risk and fuel emergency occurrences, thereby affecting the safety of people and property in the air and on the ground. To address these challenges, this study aims to develop an intelligent Uncrewed Aircraft Traffic Management (UTM) system that leverages the complementary strengths of metaheuristic and machine learning algorithms for an effective management of dense low altitude airspace. The UTM system determines time-based three-dimensional airspace Demand-Capacity Balancing (DCB) solutions by processing real-time data updates and dynamically replanning flight paths and DCB decisions in any given context, while also providing UAM operators with relevant inputs for autonomous decision-making. Simulation-based verification activities in representative conditions show that the proposed UTM system has the ability to effectively resolve overload instances and minimize potential conflicts in low-altitude airspace, with an operationally acceptable running time. We conclude that the proposed hybrid algorithm can support a successful implementation of UAM services in and around cities, and it has high potential to address critical airspace resource constraints also in traditional Air Traffic Flow Management (ATFM).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
麻花完成签到,获得积分10
刚刚
刚刚
千凡发布了新的文献求助10
1秒前
年年sci发布了新的文献求助10
1秒前
慕青应助NXK采纳,获得10
1秒前
传奇3应助从容芸采纳,获得20
2秒前
Oops发布了新的文献求助10
2秒前
刘玄德发布了新的文献求助10
2秒前
机智的凡梦完成签到,获得积分10
2秒前
LRR发布了新的文献求助10
2秒前
3秒前
Lin完成签到,获得积分10
3秒前
星星炒蛋完成签到,获得积分10
3秒前
张铭哲发布了新的文献求助10
3秒前
顾矜应助qqz采纳,获得10
4秒前
MY999完成签到,获得积分10
4秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
4秒前
4秒前
竹子发布了新的文献求助20
5秒前
5秒前
5秒前
共享精神应助hopeseason采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
liuchuck驳回了Ava应助
5秒前
嘿ha发布了新的文献求助10
6秒前
Tea233发布了新的文献求助10
6秒前
共享精神应助天气晴朗采纳,获得10
6秒前
7秒前
7秒前
无极微光应助哇哈哈哈采纳,获得20
8秒前
火山啊啊啊完成签到 ,获得积分10
8秒前
慕青应助刘国建郭菱香采纳,获得10
8秒前
tangyong发布了新的文献求助10
8秒前
荒年完成签到,获得积分10
8秒前
Hedy发布了新的文献求助10
8秒前
9秒前
雪白巨人完成签到,获得积分10
9秒前
9秒前
陶醉幻丝发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590