Hybrid AI-based 4D Trajectory Management System for Dense Low Altitude Operations and Urban Air Mobility

空中交通管制 背景(考古学) 计算机科学 交通拥挤 低空 国家空域系统 空中交通管理 运输工程 航空 高度(三角形) 工程类 航空航天工程 几何学 数学 生物 古生物学
作者
Yibing Xie,Alessandro Gardi,Man Liang,Roberto Sabatini
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:153: 109422-109422
标识
DOI:10.1016/j.ast.2024.109422
摘要

Urban Air Mobility (UAM) has emerged as a promising solution to address some of the challenges of transportation congestion and associated pollution, especially in large cities. However, the development of drone transportation and UAM services is limited by the capacity of the low altitude airspace where these new vehicles will operate. Without suitable regulatory advancements and associated traffic management systems, air traffic in the densest low-altitude sectors may incur congestion, which, in addition to affecting operational efficiency, can increase systemic risk and fuel emergency occurrences, thereby affecting the safety of people and property in the air and on the ground. To address these challenges, this study aims to develop an intelligent Uncrewed Aircraft Traffic Management (UTM) system that leverages the complementary strengths of metaheuristic and machine learning algorithms for an effective management of dense low altitude airspace. The UTM system determines time-based three-dimensional airspace Demand-Capacity Balancing (DCB) solutions by processing real-time data updates and dynamically replanning flight paths and DCB decisions in any given context, while also providing UAM operators with relevant inputs for autonomous decision-making. Simulation-based verification activities in representative conditions show that the proposed UTM system has the ability to effectively resolve overload instances and minimize potential conflicts in low-altitude airspace, with an operationally acceptable running time. We conclude that the proposed hybrid algorithm can support a successful implementation of UAM services in and around cities, and it has high potential to address critical airspace resource constraints also in traditional Air Traffic Flow Management (ATFM).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助欻欻欻采纳,获得10
刚刚
1秒前
龚幻梦发布了新的文献求助10
2秒前
sujinyu发布了新的文献求助10
2秒前
行者完成签到,获得积分10
2秒前
keke完成签到,获得积分10
3秒前
3秒前
3秒前
冬瑶完成签到,获得积分10
4秒前
4秒前
5秒前
guangweiyan完成签到 ,获得积分10
6秒前
chenwang发布了新的文献求助10
6秒前
7秒前
曾峥完成签到,获得积分10
7秒前
斯文败类应助洁净的士晋采纳,获得10
7秒前
Stargazings发布了新的文献求助10
7秒前
nianlu完成签到,获得积分10
8秒前
略略略发布了新的文献求助10
8秒前
今后应助科研狗采纳,获得10
9秒前
轩辕山槐完成签到,获得积分10
9秒前
CodeCraft应助冬瑶采纳,获得10
10秒前
11秒前
Ustinian完成签到,获得积分10
12秒前
jzt12138发布了新的文献求助10
12秒前
飘逸宛丝完成签到,获得积分10
12秒前
李健的粉丝团团长应助HJX采纳,获得10
12秒前
LLLnna发布了新的文献求助10
13秒前
Stargazings完成签到,获得积分10
14秒前
快快快快快快快快快完成签到 ,获得积分10
14秒前
yolo完成签到,获得积分10
14秒前
y1439938345发布了新的文献求助10
15秒前
15秒前
cloud发布了新的文献求助10
16秒前
16秒前
慕青应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348