Hybrid AI-based 4D Trajectory Management System for Dense Low Altitude Operations and Urban Air Mobility

空中交通管制 背景(考古学) 计算机科学 交通拥挤 低空 国家空域系统 空中交通管理 运输工程 航空 高度(三角形) 工程类 航空航天工程 古生物学 生物 几何学 数学
作者
Yibing Xie,Alessandro Gardi,Man Liang,Roberto Sabatini
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:153: 109422-109422
标识
DOI:10.1016/j.ast.2024.109422
摘要

Urban Air Mobility (UAM) has emerged as a promising solution to address some of the challenges of transportation congestion and associated pollution, especially in large cities. However, the development of drone transportation and UAM services is limited by the capacity of the low altitude airspace where these new vehicles will operate. Without suitable regulatory advancements and associated traffic management systems, air traffic in the densest low-altitude sectors may incur congestion, which, in addition to affecting operational efficiency, can increase systemic risk and fuel emergency occurrences, thereby affecting the safety of people and property in the air and on the ground. To address these challenges, this study aims to develop an intelligent Uncrewed Aircraft Traffic Management (UTM) system that leverages the complementary strengths of metaheuristic and machine learning algorithms for an effective management of dense low altitude airspace. The UTM system determines time-based three-dimensional airspace Demand-Capacity Balancing (DCB) solutions by processing real-time data updates and dynamically replanning flight paths and DCB decisions in any given context, while also providing UAM operators with relevant inputs for autonomous decision-making. Simulation-based verification activities in representative conditions show that the proposed UTM system has the ability to effectively resolve overload instances and minimize potential conflicts in low-altitude airspace, with an operationally acceptable running time. We conclude that the proposed hybrid algorithm can support a successful implementation of UAM services in and around cities, and it has high potential to address critical airspace resource constraints also in traditional Air Traffic Flow Management (ATFM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助典雅碧空采纳,获得10
刚刚
Xue发布了新的文献求助10
2秒前
Erick完成签到,获得积分10
2秒前
meng关注了科研通微信公众号
4秒前
5秒前
wucl1990发布了新的文献求助10
6秒前
8秒前
博修发布了新的文献求助10
10秒前
TANGYU发布了新的文献求助10
11秒前
知行合一完成签到,获得积分20
12秒前
12秒前
华仔应助快乐小子采纳,获得10
13秒前
标致橘子完成签到,获得积分10
14秒前
科研通AI2S应助激昂的背包采纳,获得10
15秒前
yihuifa完成签到 ,获得积分10
15秒前
吃人陈完成签到,获得积分10
16秒前
顺心靖雁完成签到,获得积分10
17秒前
18秒前
19秒前
TANGYU完成签到,获得积分10
21秒前
cxh完成签到 ,获得积分10
23秒前
Xue完成签到,获得积分10
23秒前
尊敬寒松完成签到 ,获得积分10
24秒前
帅气之槐发布了新的文献求助10
25秒前
atom完成签到,获得积分10
26秒前
27秒前
March完成签到 ,获得积分10
27秒前
快乐小子发布了新的文献求助10
31秒前
小蘑菇应助博修采纳,获得10
31秒前
32秒前
zhangkaixin完成签到,获得积分10
33秒前
Teng完成签到 ,获得积分10
36秒前
SYC完成签到,获得积分10
38秒前
彭于晏应助快乐的花果山采纳,获得10
39秒前
搜集达人应助知行合一采纳,获得30
39秒前
YxxxYLLL发布了新的文献求助10
41秒前
Martin完成签到,获得积分10
44秒前
圆圆酱完成签到 ,获得积分10
44秒前
陶醉书包完成签到 ,获得积分10
49秒前
51秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343326
求助须知:如何正确求助?哪些是违规求助? 2970407
关于积分的说明 8643896
捐赠科研通 2650477
什么是DOI,文献DOI怎么找? 1451290
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661492