Hybrid AI-based 4D Trajectory Management System for Dense Low Altitude Operations and Urban Air Mobility

空中交通管制 背景(考古学) 计算机科学 交通拥挤 低空 国家空域系统 空中交通管理 运输工程 航空 高度(三角形) 工程类 航空航天工程 古生物学 生物 几何学 数学
作者
Yibing Xie,Alessandro Gardi,Man Liang,Roberto Sabatini
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:153: 109422-109422
标识
DOI:10.1016/j.ast.2024.109422
摘要

Urban Air Mobility (UAM) has emerged as a promising solution to address some of the challenges of transportation congestion and associated pollution, especially in large cities. However, the development of drone transportation and UAM services is limited by the capacity of the low altitude airspace where these new vehicles will operate. Without suitable regulatory advancements and associated traffic management systems, air traffic in the densest low-altitude sectors may incur congestion, which, in addition to affecting operational efficiency, can increase systemic risk and fuel emergency occurrences, thereby affecting the safety of people and property in the air and on the ground. To address these challenges, this study aims to develop an intelligent Uncrewed Aircraft Traffic Management (UTM) system that leverages the complementary strengths of metaheuristic and machine learning algorithms for an effective management of dense low altitude airspace. The UTM system determines time-based three-dimensional airspace Demand-Capacity Balancing (DCB) solutions by processing real-time data updates and dynamically replanning flight paths and DCB decisions in any given context, while also providing UAM operators with relevant inputs for autonomous decision-making. Simulation-based verification activities in representative conditions show that the proposed UTM system has the ability to effectively resolve overload instances and minimize potential conflicts in low-altitude airspace, with an operationally acceptable running time. We conclude that the proposed hybrid algorithm can support a successful implementation of UAM services in and around cities, and it has high potential to address critical airspace resource constraints also in traditional Air Traffic Flow Management (ATFM).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助一个小鸡腿采纳,获得10
刚刚
刚刚
英俊的铭应助AI_S采纳,获得10
刚刚
1秒前
1秒前
小俊发布了新的文献求助10
1秒前
bc应助Angel采纳,获得30
1秒前
杨好圆完成签到,获得积分10
1秒前
Xie完成签到,获得积分10
1秒前
Stone发布了新的文献求助10
1秒前
原野小年发布了新的文献求助10
2秒前
一十六发布了新的文献求助10
2秒前
大白牛完成签到,获得积分10
4秒前
叮当喵发布了新的文献求助10
4秒前
lewis17发布了新的文献求助10
4秒前
卢秋宇发布了新的文献求助10
4秒前
5秒前
5秒前
小豆发布了新的文献求助10
5秒前
所所应助伯赏夜南采纳,获得10
5秒前
6秒前
Orange应助冷酷的尔琴采纳,获得10
6秒前
英姑应助从容问雁采纳,获得10
6秒前
6秒前
暖秋发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
原野小年完成签到,获得积分10
8秒前
稳重蜗牛完成签到,获得积分10
8秒前
帅气书白完成签到,获得积分10
9秒前
edtaa发布了新的文献求助10
9秒前
DamonChen发布了新的文献求助10
9秒前
无心的砖家完成签到,获得积分10
9秒前
落后十八发布了新的文献求助20
9秒前
sheep完成签到,获得积分10
9秒前
SciGPT应助雨雨雨采纳,获得10
10秒前
直率诗柳完成签到,获得积分10
10秒前
刚国忠完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836