Data-driven stock forecasting models based on neural networks: A review

计算机科学 人工神经网络 股票市场 人工智能 股市预测 库存(枪支) 机器学习 数据科学 机械工程 古生物学 工程类 生物
作者
Wuzhida Bao,Yuting Cao,Yin Yang,Hangjun Che,Junjian Huang,Shiping Wen
出处
期刊:Information Fusion [Elsevier]
卷期号:113: 102616-102616
标识
DOI:10.1016/j.inffus.2024.102616
摘要

As a core branch of financial forecasting, stock forecasting plays a crucial role for financial analysts, investors, and policymakers in managing risks and optimizing investment strategies, significantly enhancing the efficiency and effectiveness of economic decision-making. With the rapid development of information technology and computer science, data-driven neural network technologies have increasingly become the mainstream method for stock forecasting. Although recent review studies have provided a basic introduction to deep learning methods, they still lack detailed discussion on network architecture design and innovative details. Additionally, the latest research on emerging large language models and neural network structures has yet to be included in existing review literature. In light of this, this paper comprehensively reviews the literature on data-driven neural networks in the field of stock forecasting from 2015 to 2023, discussing various classic and innovative neural network structures, including Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Transformers, Graph Neural Networks (GNNs), Generative Adversarial Networks (GANs), and Large Language Models (LLMs). It analyzes the application and achievements of these models in stock market forecasting. Moreover, the article also outlines the commonly used datasets and various evaluation metrics in the field of stock forecasting, further exploring unresolved issues and potential future research directions, aiming to provide clear guidance and reference for researchers in stock forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3366完成签到,获得积分10
1秒前
1秒前
知愈发布了新的文献求助10
1秒前
完美世界应助杨灏洋采纳,获得10
2秒前
kelven发布了新的文献求助10
2秒前
gao456789发布了新的文献求助10
2秒前
2秒前
孙浩发布了新的文献求助10
2秒前
YULIA完成签到,获得积分10
2秒前
wanci应助郭小宝采纳,获得10
3秒前
秀艳发布了新的文献求助10
3秒前
6秒前
6秒前
6秒前
李健应助孙浩采纳,获得10
7秒前
酷波er应助鲤鱼吐司采纳,获得10
7秒前
7秒前
7秒前
wys2493完成签到,获得积分10
8秒前
kelven完成签到,获得积分10
8秒前
淡淡老三发布了新的文献求助10
8秒前
鹿依波完成签到,获得积分10
8秒前
11完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
善学以致用应助MascaraEd采纳,获得10
9秒前
京京完成签到,获得积分10
9秒前
花凉完成签到,获得积分10
10秒前
ljys发布了新的文献求助10
10秒前
Ava应助小小采纳,获得10
10秒前
10秒前
10秒前
NexusExplorer应助mojomars采纳,获得10
10秒前
11秒前
完美世界应助cherish采纳,获得10
11秒前
11秒前
Bruce完成签到,获得积分10
11秒前
Ying发布了新的文献求助10
11秒前
领导范儿应助外向的溪灵采纳,获得30
12秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
BIOMIMETIC RESTORATIVE DENTISTRY (volume 2) 500
Product Class 10: Acridin-9(10H)-ones and Related Systems 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177957
求助须知:如何正确求助?哪些是违规求助? 2828923
关于积分的说明 7969251
捐赠科研通 2490245
什么是DOI,文献DOI怎么找? 1327503
科研通“疑难数据库(出版商)”最低求助积分说明 635237
版权声明 602904