A lightweight defect detection algorithm for escalator steps

计算机科学 修剪 算法 棱锥(几何) 联营 人工智能 基线(sea) 目标检测 模式识别(心理学) 数据挖掘 数学 海洋学 几何学 农学 生物 地质学
作者
Hui Yu,Jiayan Chen,Ping Yu,Da Feng
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74320-9
摘要

Abstract In this paper, we propose an efficient target detection algorithm, ASF-Sim-YOLO, to address issues encountered in escalator step defect detection, such as an excessive number of parameters in the detection network model, poor adaptability, and difficulties in real-time processing of video streams. Firstly, to address the characteristics of escalator step defects, we designed the ASF-Sim-P2 structure to improve the detection accuracy of small targets, such as step defects. Additionally, we incorporated the SimAM (Similarity-based Attention Mechanism) by combining SimAM with SPPF (Spatial Pyramid Pooling-Fast) to enhance the model’s ability to capture key information by assigning importance weights to each pixel. Furthermore, to address the challenge posed by the small size of step defects, we replaced the traditional CIoU (Complete-Intersection-over-Union) loss function with NWD (Normalized Wasserstein Distance), which alleviated the problem of defect missing. Finally, to meet the deployment requirements of mobile devices, we performed channel pruning on the model. The experimental results showed that the improved ASF-Sim-YOLO model achieved an average accuracy (mAP50) of 96.8% on the test data set, which was a 22.1% improvement in accuracy compared to the baseline model. Meanwhile, the computational complexity (in GFLOPS) of the model was reduced to a quarter of that of the baseline model, while the frame rate (FPS) was improved to 575.1. Compared with YOLOv3-tiny, YOLOv5s, YOLOv8s, Faster-RCNN, TOOD, RTMDET and other deep learning-based target recognition algorithms, ASF-Sim-YOLO has better detection accuracy and real-time processing capability. These results demonstrate that ASF-Sim-YOLO effectively balances lightweight design and performance improvement, making it highly suitable for real-time detection of step defects, which can meet the demands of escalator inspection operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Puan采纳,获得10
1秒前
潇澜发布了新的文献求助10
1秒前
冰的岛iceland完成签到,获得积分10
1秒前
yurourou完成签到 ,获得积分20
2秒前
long0809发布了新的文献求助10
4秒前
6秒前
pluto应助淡然平灵采纳,获得30
7秒前
sc212gzh关注了科研通微信公众号
8秒前
mouseJ发布了新的文献求助10
8秒前
华仔应助拓跋问儿采纳,获得10
9秒前
9秒前
9秒前
科研通AI2S应助XYX采纳,获得10
11秒前
12秒前
长情半邪发布了新的文献求助10
12秒前
12秒前
页亚亚发布了新的文献求助10
14秒前
14秒前
可乐应助pokexuejiao采纳,获得30
14秒前
16秒前
16秒前
我是老大应助努力努力采纳,获得10
16秒前
17秒前
淡然平灵发布了新的文献求助10
17秒前
18秒前
CCCC完成签到,获得积分10
19秒前
碧蓝板栗发布了新的文献求助20
20秒前
20秒前
MISSJIN关注了科研通微信公众号
21秒前
CCCC发布了新的文献求助10
21秒前
3dyf发布了新的文献求助10
22秒前
长情半邪完成签到,获得积分10
22秒前
tanstar27完成签到 ,获得积分10
23秒前
23秒前
大个应助潇澜采纳,获得10
24秒前
25秒前
CodeCraft应助Dusk大寺柯采纳,获得10
26秒前
26秒前
顾矜应助页亚亚采纳,获得10
27秒前
Puan发布了新的文献求助10
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330025
求助须知:如何正确求助?哪些是违规求助? 2959638
关于积分的说明 8596158
捐赠科研通 2637996
什么是DOI,文献DOI怎么找? 1444096
科研通“疑难数据库(出版商)”最低求助积分说明 668934
邀请新用户注册赠送积分活动 656517