亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A lightweight defect detection algorithm for escalator steps

计算机科学 修剪 算法 棱锥(几何) 联营 人工智能 基线(sea) 目标检测 模式识别(心理学) 数据挖掘 数学 海洋学 几何学 农学 生物 地质学
作者
Hui Yu,Jiayan Chen,Ping Yu,Da Feng
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74320-9
摘要

Abstract In this paper, we propose an efficient target detection algorithm, ASF-Sim-YOLO, to address issues encountered in escalator step defect detection, such as an excessive number of parameters in the detection network model, poor adaptability, and difficulties in real-time processing of video streams. Firstly, to address the characteristics of escalator step defects, we designed the ASF-Sim-P2 structure to improve the detection accuracy of small targets, such as step defects. Additionally, we incorporated the SimAM (Similarity-based Attention Mechanism) by combining SimAM with SPPF (Spatial Pyramid Pooling-Fast) to enhance the model’s ability to capture key information by assigning importance weights to each pixel. Furthermore, to address the challenge posed by the small size of step defects, we replaced the traditional CIoU (Complete-Intersection-over-Union) loss function with NWD (Normalized Wasserstein Distance), which alleviated the problem of defect missing. Finally, to meet the deployment requirements of mobile devices, we performed channel pruning on the model. The experimental results showed that the improved ASF-Sim-YOLO model achieved an average accuracy (mAP50) of 96.8% on the test data set, which was a 22.1% improvement in accuracy compared to the baseline model. Meanwhile, the computational complexity (in GFLOPS) of the model was reduced to a quarter of that of the baseline model, while the frame rate (FPS) was improved to 575.1. Compared with YOLOv3-tiny, YOLOv5s, YOLOv8s, Faster-RCNN, TOOD, RTMDET and other deep learning-based target recognition algorithms, ASF-Sim-YOLO has better detection accuracy and real-time processing capability. These results demonstrate that ASF-Sim-YOLO effectively balances lightweight design and performance improvement, making it highly suitable for real-time detection of step defects, which can meet the demands of escalator inspection operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助2jz采纳,获得10
4秒前
yueying完成签到,获得积分10
6秒前
12秒前
15秒前
小丸子发布了新的文献求助30
22秒前
lsc完成签到 ,获得积分10
22秒前
ww完成签到 ,获得积分10
26秒前
斯文梦寒完成签到 ,获得积分10
29秒前
30秒前
Aaron应助荷兰香猪采纳,获得10
41秒前
科研通AI6应助孟大炮采纳,获得10
42秒前
xwwx完成签到 ,获得积分10
43秒前
44秒前
夜月残阳完成签到,获得积分10
46秒前
2jz发布了新的文献求助10
48秒前
51秒前
53秒前
所所应助hx采纳,获得10
57秒前
搜集达人应助2jz采纳,获得10
1分钟前
1分钟前
陶军辉完成签到 ,获得积分10
1分钟前
hx发布了新的文献求助10
1分钟前
菲菲发布了新的文献求助10
1分钟前
1分钟前
fanfan完成签到 ,获得积分10
1分钟前
菲菲完成签到 ,获得积分20
1分钟前
nPgA2o应助Nancy采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
礼包发布了新的文献求助10
1分钟前
Chen完成签到 ,获得积分10
1分钟前
孟大炮发布了新的文献求助10
1分钟前
権権发布了新的文献求助10
1分钟前
1分钟前
hx发布了新的文献求助10
1分钟前
2分钟前
共享精神应助権権采纳,获得10
2分钟前
2分钟前
Axu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538580
求助须知:如何正确求助?哪些是违规求助? 4625688
关于积分的说明 14596700
捐赠科研通 4566341
什么是DOI,文献DOI怎么找? 2503215
邀请新用户注册赠送积分活动 1481337
关于科研通互助平台的介绍 1452696