清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A lightweight defect detection algorithm for escalator steps

计算机科学 修剪 算法 棱锥(几何) 联营 人工智能 基线(sea) 目标检测 模式识别(心理学) 数据挖掘 数学 几何学 农学 生物 海洋学 地质学
作者
Hui Yu,Jiayan Chen,Ping Yu,Da Feng
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74320-9
摘要

Abstract In this paper, we propose an efficient target detection algorithm, ASF-Sim-YOLO, to address issues encountered in escalator step defect detection, such as an excessive number of parameters in the detection network model, poor adaptability, and difficulties in real-time processing of video streams. Firstly, to address the characteristics of escalator step defects, we designed the ASF-Sim-P2 structure to improve the detection accuracy of small targets, such as step defects. Additionally, we incorporated the SimAM (Similarity-based Attention Mechanism) by combining SimAM with SPPF (Spatial Pyramid Pooling-Fast) to enhance the model’s ability to capture key information by assigning importance weights to each pixel. Furthermore, to address the challenge posed by the small size of step defects, we replaced the traditional CIoU (Complete-Intersection-over-Union) loss function with NWD (Normalized Wasserstein Distance), which alleviated the problem of defect missing. Finally, to meet the deployment requirements of mobile devices, we performed channel pruning on the model. The experimental results showed that the improved ASF-Sim-YOLO model achieved an average accuracy (mAP50) of 96.8% on the test data set, which was a 22.1% improvement in accuracy compared to the baseline model. Meanwhile, the computational complexity (in GFLOPS) of the model was reduced to a quarter of that of the baseline model, while the frame rate (FPS) was improved to 575.1. Compared with YOLOv3-tiny, YOLOv5s, YOLOv8s, Faster-RCNN, TOOD, RTMDET and other deep learning-based target recognition algorithms, ASF-Sim-YOLO has better detection accuracy and real-time processing capability. These results demonstrate that ASF-Sim-YOLO effectively balances lightweight design and performance improvement, making it highly suitable for real-time detection of step defects, which can meet the demands of escalator inspection operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默完成签到 ,获得积分10
5秒前
WenJun完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
26秒前
ZDM6094完成签到 ,获得积分10
34秒前
史前巨怪完成签到,获得积分10
39秒前
48秒前
mito完成签到,获得积分10
51秒前
IIT一根草发布了新的文献求助30
52秒前
H1lb2rt完成签到 ,获得积分10
56秒前
ldjldj_2004完成签到 ,获得积分10
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
拉长的芷烟完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
Skywings发布了新的文献求助30
2分钟前
比比谁的速度快应助江江采纳,获得10
3分钟前
gsji完成签到 ,获得积分10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
忘忧Aquarius完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
xue112完成签到 ,获得积分10
3分钟前
胡33完成签到,获得积分10
3分钟前
你要学好完成签到 ,获得积分10
4分钟前
科研狗完成签到 ,获得积分10
4分钟前
东风完成签到,获得积分10
4分钟前
文献搬运工完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
5分钟前
zpc猪猪完成签到,获得积分10
5分钟前
5分钟前
123321完成签到 ,获得积分10
5分钟前
一一完成签到 ,获得积分10
5分钟前
6分钟前
jlwang完成签到,获得积分10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008520
求助须知:如何正确求助?哪些是违规求助? 3548215
关于积分的说明 11298720
捐赠科研通 3282912
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811209