AI-Based multimodal Multi-tasks analysis reveals tumor molecular heterogeneity, predicts preoperative lymph node metastasis and prognosis in papillary thyroid carcinoma: A retrospective study

医学 甲状腺癌 淋巴结转移 淋巴结 回顾性队列研究 转移 肿瘤科 甲状腺 放射科 普通外科 内科学 癌症
作者
Yunfang Yu,Wenhao Ouyang,Yunxi Huang,Hong Huang,Zehua Wang,Xueyuan Jia,Zhenjun Huang,Ruichong Lin,Yue Zhu,Yisitandaer yalikun,Langping Tan,Xi Li,Fei Zhao,Zhange Chen,Wenting Li,Jianwei Liao,Herui Yao,Miaoyun Long
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:5
标识
DOI:10.1097/js9.0000000000001875
摘要

Background: Papillary thyroid carcinoma (PTC) is the predominant form of thyroid cancer globally, especially when lymph node metastasis (LNM) occurs. Molecular heterogeneity, driven by genetic alterations and tumor microenvironment components, contributes to the complexity of PTC. Understanding these complexities is essential for precise risk stratification and therapeutic decisions. Methods: This study involved a comprehensive analysis of 521 patients with PTC from our hospital and 499 patients from The Cancer Genome Atlas (TCGA). The real-world cohort 1 comprised 256 patients with stage I–III PTC. Tissues from 252 patients were analyzed by DNA-based next-generation sequencing, and tissues from four patients were analyzed by single-cell RNA sequencing (scRNA-seq). Additionally, 586 PTC pathological sections were collected from TCGA, and 275 PTC pathological sections were collected from the real-world cohort 2. A deep learning multimodal model was developed using matched histopathology images, genomic, transcriptomic, and immune cell data to predict LNM and disease-free survival (DFS). Results: This study included a total of 1,011 PTC patients, comprising 256 patients from cohort 1, 275 patients from cohort 2, and 499 patients from TCGA. In cohort 1, we categorized PTC into four molecular subtypes based on BRAF, RAS, RET, and other mutations. BRAF mutations were significantly associated with LNM and impacted DFS. ScRNA-seq identified distinct T cell subtypes and reduced B cell diversity in BRAF-mutated PTC with LNM. The study also explored cancer-associated fibroblasts and macrophages, highlighting their associations with LNM. The deep learning model was trained using 405 pathology slides and RNA sequences from 328 PTC patients and validated with 181 slides and RNA sequences from 140 PTC patients in the TCGA cohort. It achieved high accuracy, with an AUC of 0.86 in the training cohort, 0.84 in the validation cohort, and 0.83 in the real-world cohort 2. High-risk patients in the training cohort had significantly lower DFS rates ( P <0.001). Model AUCs were 0.91 at 1 year, 0.93 at 3 years, and 0.87 at 5 years. In the validation cohort, high-risk patients also had lower DFS ( P <0.001); the AUCs were 0.89, 0.87, and 0.80 at 1, 3, and 5 years. We utilized the GradCAM algorithm to generate heatmaps from pathology-based deep learning models, which visually highlighted high-risk tumor areas in PTC patients. This enhanced clinicians’ understanding of the model’s predictions and improved diagnostic accuracy, especially in cases with lymph node metastasis. Conclusion: The AI-based analysis uncovered vital insights into PTC molecular heterogeneity, emphasizing BRAF mutations’ impact. The integrated deep learning model shows promise in predicting metastasis, offering valuable contributions to improved diagnostic and therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling_lz完成签到,获得积分10
刚刚
1秒前
2秒前
思维隋发布了新的文献求助10
3秒前
3秒前
zzzz发布了新的文献求助10
3秒前
4秒前
lili发布了新的文献求助10
5秒前
Ca完成签到,获得积分10
5秒前
传奇3应助古月采纳,获得10
5秒前
sparrow发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
Ecokarster应助King采纳,获得10
8秒前
布溜发布了新的文献求助10
9秒前
司空元正完成签到 ,获得积分10
10秒前
少夫人完成签到,获得积分10
11秒前
明理囧发布了新的文献求助10
11秒前
11秒前
李欣华发布了新的文献求助10
12秒前
LAIJINSHENG发布了新的文献求助10
12秒前
小二郎应助domingo采纳,获得10
13秒前
sparrow完成签到,获得积分10
14秒前
李李李发布了新的文献求助10
15秒前
15秒前
ShuY完成签到,获得积分10
16秒前
无花果应助明理囧采纳,获得10
17秒前
18秒前
Jay完成签到,获得积分0
18秒前
尊敬的凌晴完成签到 ,获得积分10
19秒前
19秒前
6161666661发布了新的文献求助10
19秒前
20秒前
20秒前
李李李完成签到,获得积分10
22秒前
24秒前
24秒前
24秒前
丰那个丰发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629