AI-Based multimodal Multi-tasks analysis reveals tumor molecular heterogeneity, predicts preoperative lymph node metastasis and prognosis in papillary thyroid carcinoma: A retrospective study

医学 甲状腺癌 淋巴结转移 淋巴结 回顾性队列研究 转移 肿瘤科 甲状腺 放射科 普通外科 内科学 癌症
作者
Yunfang Yu,Wenhao Ouyang,Yunxi Huang,Hong Huang,Zehua Wang,Xueyuan Jia,Zhenjun Huang,Ruichong Lin,Yue Zhu,Yisitandaer yalikun,Langping Tan,Xi Li,Fei Zhao,Zhange Chen,Wenting Li,Jianwei Liao,Herui Yao,Miaoyun Long
出处
期刊:International Journal of Surgery [Elsevier]
被引量:1
标识
DOI:10.1097/js9.0000000000001875
摘要

Background: Papillary thyroid carcinoma (PTC) is the predominant form of thyroid cancer globally, especially when lymph node metastasis (LNM) occurs. Molecular heterogeneity, driven by genetic alterations and tumor microenvironment components, contributes to the complexity of PTC. Understanding these complexities is essential for precise risk stratification and therapeutic decisions. Methods: This study involved a comprehensive analysis of 521 patients with PTC from our hospital and 499 patients from The Cancer Genome Atlas (TCGA). The real-world cohort 1 comprised 256 patients with stage I–III PTC. Tissues from 252 patients were analyzed by DNA-based next-generation sequencing, and tissues from four patients were analyzed by single-cell RNA sequencing (scRNA-seq). Additionally, 586 PTC pathological sections were collected from TCGA, and 275 PTC pathological sections were collected from the real-world cohort 2. A deep learning multimodal model was developed using matched histopathology images, genomic, transcriptomic, and immune cell data to predict LNM and disease-free survival (DFS). Results: This study included a total of 1,011 PTC patients, comprising 256 patients from cohort 1, 275 patients from cohort 2, and 499 patients from TCGA. In cohort 1, we categorized PTC into four molecular subtypes based on BRAF, RAS, RET, and other mutations. BRAF mutations were significantly associated with LNM and impacted DFS. ScRNA-seq identified distinct T cell subtypes and reduced B cell diversity in BRAF-mutated PTC with LNM. The study also explored cancer-associated fibroblasts and macrophages, highlighting their associations with LNM. The deep learning model was trained using 405 pathology slides and RNA sequences from 328 PTC patients and validated with 181 slides and RNA sequences from 140 PTC patients in the TCGA cohort. It achieved high accuracy, with an AUC of 0.86 in the training cohort, 0.84 in the validation cohort, and 0.83 in the real-world cohort 2. High-risk patients in the training cohort had significantly lower DFS rates ( P <0.001). Model AUCs were 0.91 at 1 year, 0.93 at 3 years, and 0.87 at 5 years. In the validation cohort, high-risk patients also had lower DFS ( P <0.001); the AUCs were 0.89, 0.87, and 0.80 at 1, 3, and 5 years. We utilized the GradCAM algorithm to generate heatmaps from pathology-based deep learning models, which visually highlighted high-risk tumor areas in PTC patients. This enhanced clinicians’ understanding of the model’s predictions and improved diagnostic accuracy, especially in cases with lymph node metastasis. Conclusion: The AI-based analysis uncovered vital insights into PTC molecular heterogeneity, emphasizing BRAF mutations’ impact. The integrated deep learning model shows promise in predicting metastasis, offering valuable contributions to improved diagnostic and therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助guguji采纳,获得10
刚刚
刚刚
1秒前
百思完成签到 ,获得积分10
1秒前
cc完成签到 ,获得积分10
1秒前
结实的啤酒完成签到,获得积分10
2秒前
pqy完成签到,获得积分10
2秒前
sxl发布了新的文献求助30
2秒前
2秒前
xuqiansd发布了新的文献求助10
2秒前
4秒前
kingsley完成签到,获得积分10
4秒前
4秒前
还行吧完成签到 ,获得积分10
5秒前
www发布了新的文献求助20
5秒前
胡健完成签到,获得积分20
6秒前
慕青应助七安采纳,获得10
6秒前
yzr01发布了新的文献求助10
7秒前
金皮卡发布了新的文献求助10
7秒前
CipherSage应助xuqiansd采纳,获得10
7秒前
jbear发布了新的文献求助10
8秒前
8秒前
Dong发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
粱自中发布了新的文献求助20
9秒前
胡健发布了新的文献求助10
10秒前
10秒前
10秒前
怕黑寻菡完成签到,获得积分10
11秒前
大个应助carcar采纳,获得10
11秒前
12秒前
sxl完成签到,获得积分10
12秒前
Akim应助szy采纳,获得10
13秒前
nazar发布了新的文献求助10
13秒前
丘比特应助wrh采纳,获得10
14秒前
Aude完成签到,获得积分10
14秒前
咯噔发布了新的文献求助10
14秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218864
求助须知:如何正确求助?哪些是违规求助? 2867866
关于积分的说明 8158618
捐赠科研通 2534991
什么是DOI,文献DOI怎么找? 1367348
科研通“疑难数据库(出版商)”最低求助积分说明 645033
邀请新用户注册赠送积分活动 618203