AI-Based multimodal Multi-tasks analysis reveals tumor molecular heterogeneity, predicts preoperative lymph node metastasis and prognosis in papillary thyroid carcinoma: A retrospective study

医学 甲状腺癌 淋巴结转移 淋巴结 回顾性队列研究 转移 肿瘤科 甲状腺 放射科 普通外科 内科学 癌症
作者
Yunfang Yu,Wenhao Ouyang,Yunxi Huang,Hong Huang,Zehua Wang,Xueyuan Jia,Zhenjun Huang,Ruichong Lin,Yue Zhu,Yisitandaer yalikun,Langping Tan,Xi Li,Fei Zhao,Zhange Chen,Wenting Li,Jianwei Liao,Herui Yao,Miaoyun Long
出处
期刊:International Journal of Surgery [Elsevier]
被引量:1
标识
DOI:10.1097/js9.0000000000001875
摘要

Background: Papillary thyroid carcinoma (PTC) is the predominant form of thyroid cancer globally, especially when lymph node metastasis (LNM) occurs. Molecular heterogeneity, driven by genetic alterations and tumor microenvironment components, contributes to the complexity of PTC. Understanding these complexities is essential for precise risk stratification and therapeutic decisions. Methods: This study involved a comprehensive analysis of 521 patients with PTC from our hospital and 499 patients from The Cancer Genome Atlas (TCGA). The real-world cohort 1 comprised 256 patients with stage I–III PTC. Tissues from 252 patients were analyzed by DNA-based next-generation sequencing, and tissues from four patients were analyzed by single-cell RNA sequencing (scRNA-seq). Additionally, 586 PTC pathological sections were collected from TCGA, and 275 PTC pathological sections were collected from the real-world cohort 2. A deep learning multimodal model was developed using matched histopathology images, genomic, transcriptomic, and immune cell data to predict LNM and disease-free survival (DFS). Results: This study included a total of 1,011 PTC patients, comprising 256 patients from cohort 1, 275 patients from cohort 2, and 499 patients from TCGA. In cohort 1, we categorized PTC into four molecular subtypes based on BRAF, RAS, RET, and other mutations. BRAF mutations were significantly associated with LNM and impacted DFS. ScRNA-seq identified distinct T cell subtypes and reduced B cell diversity in BRAF-mutated PTC with LNM. The study also explored cancer-associated fibroblasts and macrophages, highlighting their associations with LNM. The deep learning model was trained using 405 pathology slides and RNA sequences from 328 PTC patients and validated with 181 slides and RNA sequences from 140 PTC patients in the TCGA cohort. It achieved high accuracy, with an AUC of 0.86 in the training cohort, 0.84 in the validation cohort, and 0.83 in the real-world cohort 2. High-risk patients in the training cohort had significantly lower DFS rates ( P <0.001). Model AUCs were 0.91 at 1 year, 0.93 at 3 years, and 0.87 at 5 years. In the validation cohort, high-risk patients also had lower DFS ( P <0.001); the AUCs were 0.89, 0.87, and 0.80 at 1, 3, and 5 years. We utilized the GradCAM algorithm to generate heatmaps from pathology-based deep learning models, which visually highlighted high-risk tumor areas in PTC patients. This enhanced clinicians’ understanding of the model’s predictions and improved diagnostic accuracy, especially in cases with lymph node metastasis. Conclusion: The AI-based analysis uncovered vital insights into PTC molecular heterogeneity, emphasizing BRAF mutations’ impact. The integrated deep learning model shows promise in predicting metastasis, offering valuable contributions to improved diagnostic and therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
念念发布了新的文献求助10
刚刚
An_mie完成签到,获得积分10
刚刚
刚刚
刚刚
Arabella完成签到,获得积分10
1秒前
HEIKU应助追梦人采纳,获得10
1秒前
1秒前
小T儿发布了新的文献求助10
1秒前
852应助woxiangbiye采纳,获得10
1秒前
飞羽完成签到,获得积分10
2秒前
Owen应助cherry采纳,获得10
2秒前
坚定的老六完成签到,获得积分10
2秒前
协和_子鱼完成签到,获得积分0
2秒前
3秒前
Hyde完成签到,获得积分10
4秒前
小南孩完成签到,获得积分10
4秒前
4秒前
5秒前
研友_VZG7GZ应助keyancui采纳,获得10
5秒前
康康完成签到 ,获得积分10
6秒前
英姑应助毕业就好采纳,获得10
6秒前
虚心的迎荷完成签到,获得积分10
6秒前
脑洞疼应助少侠不是菜鸟采纳,获得10
6秒前
6秒前
祝雲完成签到,获得积分10
6秒前
新的心跳发布了新的文献求助10
6秒前
壹拾柒完成签到,获得积分10
7秒前
7秒前
7秒前
mimi发布了新的文献求助10
7秒前
呆呆完成签到,获得积分10
8秒前
blebui应助姜茶采纳,获得10
8秒前
幼稚园小新完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
9秒前
snowball完成签到,获得积分10
9秒前
10秒前
duoduozs发布了新的文献求助10
10秒前
velpro完成签到,获得积分10
10秒前
qqqq完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672