AI-Based multimodal Multi-tasks analysis reveals tumor molecular heterogeneity, predicts preoperative lymph node metastasis and prognosis in papillary thyroid carcinoma: A retrospective study

医学 甲状腺癌 淋巴结转移 淋巴结 回顾性队列研究 转移 肿瘤科 甲状腺 放射科 普通外科 内科学 癌症
作者
Yunfang Yu,Wenhao Ouyang,Yunxi Huang,Hong Huang,Zehua Wang,Xueyuan Jia,Zhenjun Huang,Ruichong Lin,Yue Zhu,Yisitandaer yalikun,Langping Tan,Xi Li,Fei Zhao,Zhange Chen,Wenting Li,Jianwei Liao,Herui Yao,Miaoyun Long
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:5
标识
DOI:10.1097/js9.0000000000001875
摘要

Background: Papillary thyroid carcinoma (PTC) is the predominant form of thyroid cancer globally, especially when lymph node metastasis (LNM) occurs. Molecular heterogeneity, driven by genetic alterations and tumor microenvironment components, contributes to the complexity of PTC. Understanding these complexities is essential for precise risk stratification and therapeutic decisions. Methods: This study involved a comprehensive analysis of 521 patients with PTC from our hospital and 499 patients from The Cancer Genome Atlas (TCGA). The real-world cohort 1 comprised 256 patients with stage I–III PTC. Tissues from 252 patients were analyzed by DNA-based next-generation sequencing, and tissues from four patients were analyzed by single-cell RNA sequencing (scRNA-seq). Additionally, 586 PTC pathological sections were collected from TCGA, and 275 PTC pathological sections were collected from the real-world cohort 2. A deep learning multimodal model was developed using matched histopathology images, genomic, transcriptomic, and immune cell data to predict LNM and disease-free survival (DFS). Results: This study included a total of 1,011 PTC patients, comprising 256 patients from cohort 1, 275 patients from cohort 2, and 499 patients from TCGA. In cohort 1, we categorized PTC into four molecular subtypes based on BRAF, RAS, RET, and other mutations. BRAF mutations were significantly associated with LNM and impacted DFS. ScRNA-seq identified distinct T cell subtypes and reduced B cell diversity in BRAF-mutated PTC with LNM. The study also explored cancer-associated fibroblasts and macrophages, highlighting their associations with LNM. The deep learning model was trained using 405 pathology slides and RNA sequences from 328 PTC patients and validated with 181 slides and RNA sequences from 140 PTC patients in the TCGA cohort. It achieved high accuracy, with an AUC of 0.86 in the training cohort, 0.84 in the validation cohort, and 0.83 in the real-world cohort 2. High-risk patients in the training cohort had significantly lower DFS rates ( P <0.001). Model AUCs were 0.91 at 1 year, 0.93 at 3 years, and 0.87 at 5 years. In the validation cohort, high-risk patients also had lower DFS ( P <0.001); the AUCs were 0.89, 0.87, and 0.80 at 1, 3, and 5 years. We utilized the GradCAM algorithm to generate heatmaps from pathology-based deep learning models, which visually highlighted high-risk tumor areas in PTC patients. This enhanced clinicians’ understanding of the model’s predictions and improved diagnostic accuracy, especially in cases with lymph node metastasis. Conclusion: The AI-based analysis uncovered vital insights into PTC molecular heterogeneity, emphasizing BRAF mutations’ impact. The integrated deep learning model shows promise in predicting metastasis, offering valuable contributions to improved diagnostic and therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯板栗发布了新的文献求助10
1秒前
浮游应助Raye采纳,获得10
1秒前
波波完成签到,获得积分10
1秒前
1秒前
夜尽天明应助琪哒采纳,获得10
1秒前
2秒前
2秒前
咸鱼发布了新的文献求助10
2秒前
2秒前
善学以致用应助WANGJD采纳,获得10
3秒前
PigaChu发布了新的文献求助10
3秒前
Haries完成签到,获得积分10
3秒前
tlc_191026完成签到,获得积分10
3秒前
小伍同学完成签到,获得积分10
4秒前
伊雪儿完成签到,获得积分10
4秒前
科研通AI2S应助077采纳,获得10
5秒前
杨知意完成签到,获得积分10
5秒前
nightmoonsun发布了新的文献求助10
6秒前
柚子发布了新的文献求助10
7秒前
7秒前
7秒前
在水一方应助吴帆采纳,获得10
8秒前
高分子物理不会完成签到,获得积分10
8秒前
Jessica完成签到,获得积分20
8秒前
善学以致用应助clone2012采纳,获得30
8秒前
雨张发布了新的文献求助20
8秒前
9秒前
10秒前
10秒前
红柚完成签到,获得积分10
10秒前
豪豪完成签到,获得积分10
11秒前
一一完成签到 ,获得积分10
11秒前
wyc完成签到,获得积分10
12秒前
不想干活应助yzbbb采纳,获得10
12秒前
bkagyin应助研友_89jWGL采纳,获得10
12秒前
吴圳完成签到,获得积分20
13秒前
15秒前
哲别发布了新的文献求助10
15秒前
科目三应助lili采纳,获得10
15秒前
赘婿应助蛋蛋采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426