Hyperspectral imaging coupled with deep learning model for visualization and detection of early bruises on apples

瘀伤 高光谱成像 人工智能 计算机科学 主成分分析 模式识别(心理学) 计算机视觉 深度学习 医学 外科
作者
Chengyu Zhang,Chaoxian Liu,Shan Zeng,Weiqiang Yang,Yulong Chen
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:134: 106489-106489
标识
DOI:10.1016/j.jfca.2024.106489
摘要

Early bruise on apples caused by external impacts during the transportation process is commonly difficult to be detected on the apple surface, limiting the application of traditional machine vision methods in determining fruit quality. In recent years, hyperspectral imaging (HSI) has emerged as a promising technology for identifying early bruise of fruits due to its efficient and nondestructive detection. In this study, HSI data in the shortwave infrared range were collected at 2-hour and 6-hour intervals after mechanical damage. The combination of the successive projections algorithm (SPA) and principal component analysis (PCA) was used to select three key feature bands, namely, 1074 nm, 1269 nm and 1441 nm. Pseudo color transformation and band ratio algorithm were then employed to improve the contrast between damaged and healthy apple tissues for image enhancement. The fast and precise YOLOv5 (FP-YOLOv5) model achieved effective identification of apple bruises, with a high recognition rate of 95% and a fast detection speed at 130 fps. Overall, the proposed framework based on band selection and image enhancement exhibits better performance in the detection of early apple bruises, providing useful insights for HSI combined with a deep learning model in the grading evaluation of fruit quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲍建芳完成签到,获得积分10
1秒前
烟花应助@@@采纳,获得10
1秒前
zx598376321完成签到,获得积分10
1秒前
YL发布了新的文献求助10
1秒前
1秒前
CodeCraft应助nenshen采纳,获得10
1秒前
熊二完成签到,获得积分10
2秒前
33完成签到 ,获得积分10
2秒前
酷波er应助高贵路灯采纳,获得10
2秒前
Aten完成签到,获得积分10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
明理楷瑞完成签到,获得积分10
2秒前
云舒应助科研通管家采纳,获得40
2秒前
SYLH应助科研通管家采纳,获得20
2秒前
思源应助科研通管家采纳,获得50
2秒前
Linda完成签到 ,获得积分10
2秒前
SYLH应助科研通管家采纳,获得20
3秒前
英姑应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
wisdom应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
64658应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
酷炫翠桃应助科研通管家采纳,获得10
3秒前
雷雨泽石完成签到,获得积分10
3秒前
3秒前
3秒前
Bonnie完成签到 ,获得积分20
4秒前
海风发布了新的文献求助10
4秒前
5秒前
燃燃完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
。。。完成签到,获得积分10
6秒前
奥特超曼应助ark861023采纳,获得10
6秒前
AAA电池批发顾总完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582