电致变色
材料科学
薄膜
电致变色装置
基质(水族馆)
纳米结构
纳米技术
化学工程
热稳定性
电极
热重分析
光电子学
化学
海洋学
工程类
物理化学
地质学
作者
M. Manoj Cristopher,P. Karthick,R. Sivakumar,K. Saravanakumar,S. Arumugam,K. Jeyadheepan
标识
DOI:10.1016/j.electacta.2024.144650
摘要
Electrochromic society is keen to develop devices with multicolor displays with high stability, using eco-friendly inorganic materials. In the present research, Influence of substrate temperature on the electrochromic V2O5 active electrodes deposited using automated nebulizer spray pyrolysis was examined to demonstrate V2O5 nanostructured films with good cyclic stability, high color contrast, and a robust memory effect. The structural characterization of the V2O5 thin films was conducted through R-ray diffraction and thermogravimetric analysis to assess material stability. Nanostructure morphology under different conditions was analysed using SEM and TEM. The electrochromic studies revealed that the higher optical modulation (ΔT) was achieved (with 70.8% at 550 nm) in a very short switching time. Feature studies on V2O5 under different potentials were conducted to understand the capacitive and diffusion effects. The electrochromic response V2O5 thin films to various potentials was analysed using ex-situ XRD, elucidates phase changes from V2O5 to LiVO5 and V4O9, and a 2000-cycle CV measurement comprehended the material stability. The significantly improved electrochromic performance is primarily attributed to the nanosheet structure of the V2O5 thin films, since the structures enhance the material stability during lithium-ion intercalation/deintercalation processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI