FastSTI: A Fast Conditional Pseudo Numerical Diffusion Model for Spatio-Temporal Traffic Data Imputation

计算机科学 插补(统计学) 统计物理学 数据挖掘 物理 机器学习 缺少数据
作者
Shaokang Cheng,Nada Osman,Shiru Qu,Lamberto Ballan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tits.2024.3469240
摘要

High-quality spatiotemporal traffic data is crucial for intelligent transportation systems (ITS) and their data-driven applications. Inevitably, the issue of missing data caused by various disturbances threatens the reliability of data acquisition. Recent studies of diffusion probability models have demonstrated the superiority of deep generative models in imputation tasks by precisely capturing the spatio-temporal correlation of traffic data. One drawback of diffusion models is their slow sampling/denoising process. In this work, we aim to accelerate the imputation process while retaining the performance. We propose a fast conditional diffusion model for spatiotemporal traffic data imputation (FastSTI). To speed up the process yet, obtain better performance, we propose the application of a high-order pseudo-numerical solver. Our method further revs the imputation by introducing a predefined alignment strategy of variance schedule during the sampling process. Evaluating FastSTI on two types of real-world traffic datasets (traffic speed and flow) with different missing data scenarios proves its ability to impute higher-quality samples in only six sampling steps, especially under high missing rates (60\% $\sim$ 90\%). The experimental results illustrate a speed-up of $\textbf{8.3} \times$ faster than the current state-of-the-art model while achieving better performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
ZCZD完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Danqing发布了新的文献求助10
2秒前
2秒前
liuzhanyu发布了新的文献求助10
3秒前
hha完成签到,获得积分20
3秒前
3秒前
4秒前
5秒前
悦耳指甲油完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI2S应助大胆诗云采纳,获得10
6秒前
Owen应助诺克萨斯采纳,获得10
7秒前
7秒前
Hello应助冷艳的纸鹤采纳,获得10
7秒前
7秒前
我是老大应助Arsenel采纳,获得10
7秒前
hi_traffic完成签到,获得积分10
8秒前
大可发布了新的文献求助10
8秒前
9秒前
wzc发布了新的文献求助10
9秒前
酷波er应助zxd采纳,获得10
9秒前
10秒前
future发布了新的文献求助10
10秒前
杭秋寒发布了新的文献求助10
10秒前
11秒前
eznesug完成签到,获得积分10
11秒前
香蕉觅云应助陈品琪采纳,获得10
12秒前
12秒前
12秒前
zzuzll完成签到,获得积分10
13秒前
LaTeXer应助1111111采纳,获得30
13秒前
飘逸焱完成签到 ,获得积分10
13秒前
棋士应助1111111采纳,获得10
13秒前
CodeCraft应助1111111采纳,获得10
14秒前
星辰大海应助无语的大门采纳,获得10
14秒前
完美世界应助冷艳的纸鹤采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718285
求助须知:如何正确求助?哪些是违规求助? 5251746
关于积分的说明 15285174
捐赠科研通 4868514
什么是DOI,文献DOI怎么找? 2614220
邀请新用户注册赠送积分活动 1564054
关于科研通互助平台的介绍 1521548