GKE-TUNet: Geometry-Knowledge Embedded TransUNet Model for Retinal Vessel Segmentation Considering Anatomical Topology

计算机科学 分割 特征(语言学) 人工智能 图形 特征提取 卷积(计算机科学) 模式识别(心理学) 拓扑(电路) 中轴 图像分割 计算机视觉 算法 理论计算机科学 数学 人工神经网络 组合数学 哲学 语言学
作者
Yunlong Qiu,Haifeng Zhang,Chonghui Song,Xiaolong Zhao,Hao Li,Xianbo Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6725-6737
标识
DOI:10.1109/jbhi.2024.3442528
摘要

Automated retinal vessel segmentation is crucial for computer-aided clinical diagnosis and retinopathy screening. However, deep learning faces challenges in extracting complex intertwined structures and subtle small vessels from densely vascularized regions. To address these issues, we propose a novel segmentation model, called Geometry-Knowledge Embedded TransUNet (GKE-TUNet), which incorporates explicit embedding of topological features of retinal vessel anatomy. In the proposed GKE-TUNet model, a skeleton extraction network is pre-trained to extract the anatomical topology of retinal vessels from refined segmentation labels. During vessel segmentation, the dense skeleton graph is sampled as a graph of key-points and connections and is incorporated into the skip connection layer of TransUNet. The graph vertices are used as node features and correspond to positions in the low-level feature maps. The graph attention network (GAT) is used as the graph convolution backbone network to capture the shape semantics of vessels and the interaction of key locations along the topological direction. Finally, the node features obtained by graph convolution are read out as a sparse feature map based on their corresponding spatial coordinates. To address the problem of sparse feature maps, we employ convolution operators to fuse sparse feature maps with low-level dense feature maps. This fusion is weighted and connected to deep feature maps. Experimental results on the DRIVE, CHASE-DB1, and STARE datasets demonstrate the competitiveness of our proposed method compared to existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺的芫发布了新的文献求助10
1秒前
王宁发布了新的文献求助30
1秒前
打打应助up采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
结实蜡烛发布了新的文献求助10
4秒前
louyu完成签到 ,获得积分0
4秒前
我先睡了发布了新的文献求助10
4秒前
深情的迎海完成签到,获得积分10
4秒前
希柚完成签到 ,获得积分10
4秒前
6秒前
Giroro_roro发布了新的文献求助10
6秒前
陈开心完成签到,获得积分10
7秒前
花生发布了新的文献求助10
7秒前
7秒前
不秃头发布了新的文献求助20
7秒前
瞿亭龙完成签到,获得积分10
7秒前
闪闪的梦柏完成签到,获得积分10
7秒前
7秒前
xiaohu完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
神勇代荷完成签到,获得积分10
9秒前
9秒前
realyxy完成签到,获得积分20
10秒前
满天星发布了新的文献求助10
10秒前
薛定谔的猫完成签到,获得积分10
12秒前
留胡子的霖完成签到,获得积分10
12秒前
心灵美的白卉完成签到,获得积分20
12秒前
ZZ0901完成签到,获得积分10
12秒前
12秒前
要减肥含灵完成签到,获得积分10
13秒前
小垚完成签到,获得积分10
13秒前
spy发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620