GKE-TUNet: Geometry-Knowledge Embedded TransUNet Model for Retinal Vessel Segmentation Considering Anatomical Topology

计算机科学 分割 特征(语言学) 人工智能 图形 特征提取 卷积(计算机科学) 模式识别(心理学) 拓扑(电路) 中轴 图像分割 计算机视觉 算法 理论计算机科学 数学 人工神经网络 组合数学 语言学 哲学
作者
Yunlong Qiu,Haifeng Zhang,Chonghui Song,Xiaolong Zhao,Hao Li,Xianbo Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6725-6737
标识
DOI:10.1109/jbhi.2024.3442528
摘要

Automated retinal vessel segmentation is crucial for computer-aided clinical diagnosis and retinopathy screening. However, deep learning faces challenges in extracting complex intertwined structures and subtle small vessels from densely vascularized regions. To address these issues, we propose a novel segmentation model, called Geometry-Knowledge Embedded TransUNet (GKE-TUNet), which incorporates explicit embedding of topological features of retinal vessel anatomy. In the proposed GKE-TUNet model, a skeleton extraction network is pre-trained to extract the anatomical topology of retinal vessels from refined segmentation labels. During vessel segmentation, the dense skeleton graph is sampled as a graph of key-points and connections and is incorporated into the skip connection layer of TransUNet. The graph vertices are used as node features and correspond to positions in the low-level feature maps. The graph attention network (GAT) is used as the graph convolution backbone network to capture the shape semantics of vessels and the interaction of key locations along the topological direction. Finally, the node features obtained by graph convolution are read out as a sparse feature map based on their corresponding spatial coordinates. To address the problem of sparse feature maps, we employ convolution operators to fuse sparse feature maps with low-level dense feature maps. This fusion is weighted and connected to deep feature maps. Experimental results on the DRIVE, CHASE-DB1, and STARE datasets demonstrate the competitiveness of our proposed method compared to existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向晚完成签到 ,获得积分10
1秒前
naych发布了新的文献求助10
3秒前
3秒前
lili发布了新的文献求助10
4秒前
yifei完成签到,获得积分10
4秒前
暮光之城完成签到,获得积分10
5秒前
Chen完成签到,获得积分10
5秒前
YaoQi完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
pluto应助早安采纳,获得10
8秒前
辛卫铎完成签到,获得积分10
9秒前
科目三应助咸鱼采纳,获得30
9秒前
Chen发布了新的文献求助10
9秒前
11秒前
风思雅发布了新的文献求助10
11秒前
风中雨竹发布了新的文献求助10
13秒前
TXQ发布了新的文献求助10
13秒前
14秒前
快乐的龙猫完成签到,获得积分10
16秒前
16秒前
小马甲应助小小医采纳,获得10
16秒前
答辩完成签到 ,获得积分10
18秒前
关耳发布了新的文献求助10
19秒前
李爱国应助lili采纳,获得10
20秒前
今后应助哈机密南北撸多采纳,获得10
21秒前
22秒前
老虎皮发布了新的文献求助10
22秒前
鞘皮完成签到,获得积分10
23秒前
Jasper应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得30
25秒前
森活鱼块应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
香蕉诗蕊应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601676
求助须知:如何正确求助?哪些是违规求助? 4687108
关于积分的说明 14847661
捐赠科研通 4681810
什么是DOI,文献DOI怎么找? 2539466
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471335