GKE-TUNet: Geometry-Knowledge Embedded TransUNet Model for Retinal Vessel Segmentation Considering Anatomical Topology

计算机科学 分割 特征(语言学) 人工智能 图形 特征提取 卷积(计算机科学) 模式识别(心理学) 拓扑(电路) 中轴 图像分割 计算机视觉 算法 理论计算机科学 数学 人工神经网络 组合数学 语言学 哲学
作者
Yunlong Qiu,Haifeng Zhang,Chonghui Song,Xiaolong Zhao,Hao Li,Xianbo Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6725-6737
标识
DOI:10.1109/jbhi.2024.3442528
摘要

Automated retinal vessel segmentation is crucial for computer-aided clinical diagnosis and retinopathy screening. However, deep learning faces challenges in extracting complex intertwined structures and subtle small vessels from densely vascularized regions. To address these issues, we propose a novel segmentation model, called Geometry-Knowledge Embedded TransUNet (GKE-TUNet), which incorporates explicit embedding of topological features of retinal vessel anatomy. In the proposed GKE-TUNet model, a skeleton extraction network is pre-trained to extract the anatomical topology of retinal vessels from refined segmentation labels. During vessel segmentation, the dense skeleton graph is sampled as a graph of key-points and connections and is incorporated into the skip connection layer of TransUNet. The graph vertices are used as node features and correspond to positions in the low-level feature maps. The graph attention network (GAT) is used as the graph convolution backbone network to capture the shape semantics of vessels and the interaction of key locations along the topological direction. Finally, the node features obtained by graph convolution are read out as a sparse feature map based on their corresponding spatial coordinates. To address the problem of sparse feature maps, we employ convolution operators to fuse sparse feature maps with low-level dense feature maps. This fusion is weighted and connected to deep feature maps. Experimental results on the DRIVE, CHASE-DB1, and STARE datasets demonstrate the competitiveness of our proposed method compared to existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冂xx易云完成签到,获得积分10
1秒前
嬴政飞发布了新的文献求助10
1秒前
苏苏完成签到,获得积分10
2秒前
2秒前
lpk完成签到,获得积分10
2秒前
科研通AI6应助guyutang采纳,获得20
3秒前
3秒前
5秒前
qiuli发布了新的文献求助10
6秒前
7秒前
hh完成签到,获得积分20
7秒前
儒雅的蜜粉完成签到,获得积分10
8秒前
shufessm完成签到,获得积分0
9秒前
寇博翔发布了新的文献求助10
10秒前
hh发布了新的文献求助10
10秒前
寻绿完成签到,获得积分10
11秒前
cora完成签到 ,获得积分10
16秒前
万能图书馆应助海蓝博采纳,获得10
18秒前
19秒前
lpk发布了新的文献求助10
19秒前
24秒前
25秒前
26秒前
豪哥发布了新的文献求助10
26秒前
褪色完成签到,获得积分10
26秒前
xiaoyu完成签到,获得积分10
26秒前
26秒前
ljy发布了新的文献求助10
27秒前
Auh完成签到,获得积分10
28秒前
海蓝博发布了新的文献求助10
30秒前
30秒前
cjg完成签到,获得积分10
30秒前
绿野仙踪发布了新的文献求助10
31秒前
32秒前
LOMO发布了新的文献求助10
32秒前
隐形曼青应助向上采纳,获得10
32秒前
cxb完成签到,获得积分10
33秒前
35秒前
Lucas应助ljy采纳,获得10
35秒前
aa发布了新的文献求助50
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478