GKE-TUNet: Geometry-Knowledge Embedded TransUNet Model for Retinal Vessel Segmentation Considering Anatomical Topology

计算机科学 分割 特征(语言学) 人工智能 图形 特征提取 卷积(计算机科学) 模式识别(心理学) 拓扑(电路) 中轴 图像分割 计算机视觉 算法 理论计算机科学 数学 人工神经网络 组合数学 语言学 哲学
作者
Yunlong Qiu,Haifeng Zhang,Chonghui Song,Xiaolong Zhao,Hao Li,Xianbo Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6725-6737
标识
DOI:10.1109/jbhi.2024.3442528
摘要

Automated retinal vessel segmentation is crucial for computer-aided clinical diagnosis and retinopathy screening. However, deep learning faces challenges in extracting complex intertwined structures and subtle small vessels from densely vascularized regions. To address these issues, we propose a novel segmentation model, called Geometry-Knowledge Embedded TransUNet (GKE-TUNet), which incorporates explicit embedding of topological features of retinal vessel anatomy. In the proposed GKE-TUNet model, a skeleton extraction network is pre-trained to extract the anatomical topology of retinal vessels from refined segmentation labels. During vessel segmentation, the dense skeleton graph is sampled as a graph of key-points and connections and is incorporated into the skip connection layer of TransUNet. The graph vertices are used as node features and correspond to positions in the low-level feature maps. The graph attention network (GAT) is used as the graph convolution backbone network to capture the shape semantics of vessels and the interaction of key locations along the topological direction. Finally, the node features obtained by graph convolution are read out as a sparse feature map based on their corresponding spatial coordinates. To address the problem of sparse feature maps, we employ convolution operators to fuse sparse feature maps with low-level dense feature maps. This fusion is weighted and connected to deep feature maps. Experimental results on the DRIVE, CHASE-DB1, and STARE datasets demonstrate the competitiveness of our proposed method compared to existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长白雪茫茫完成签到,获得积分10
刚刚
小点点完成签到 ,获得积分10
1秒前
高玉峰发布了新的文献求助10
1秒前
爆米花应助宠仙采纳,获得10
1秒前
刻苦向梦发布了新的文献求助10
2秒前
lxmccc发布了新的文献求助10
2秒前
yyl完成签到 ,获得积分10
2秒前
小马甲应助爱笑的煎饼采纳,获得10
3秒前
3秒前
酷波er应助欢呼冷亦采纳,获得10
4秒前
研友_Z63G18完成签到 ,获得积分10
4秒前
玉米之路发布了新的文献求助10
4秒前
zhy完成签到,获得积分20
5秒前
6秒前
完美世界应助星星蘸大酱采纳,获得10
6秒前
Peng完成签到,获得积分10
6秒前
求助人员应助ali采纳,获得30
6秒前
李健的粉丝团团长应助GTY采纳,获得10
6秒前
6秒前
搞怪慕凝完成签到,获得积分10
6秒前
6秒前
爆米花应助mimosal采纳,获得10
7秒前
orixero应助wwk采纳,获得10
8秒前
8秒前
8秒前
9秒前
passion发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
核桃发布了新的文献求助10
10秒前
10秒前
zyw发布了新的文献求助10
11秒前
11秒前
sbdxlwyd完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
七慕凉应助大灯泡采纳,获得10
14秒前
Queena发布了新的文献求助10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774