GKE-TUNet: Geometry-Knowledge Embedded TransUNet Model for Retinal Vessel Segmentation Considering Anatomical Topology

计算机科学 分割 特征(语言学) 人工智能 图形 特征提取 卷积(计算机科学) 模式识别(心理学) 拓扑(电路) 中轴 图像分割 计算机视觉 算法 理论计算机科学 数学 人工神经网络 组合数学 哲学 语言学
作者
Yunlong Qiu,Haifeng Zhang,Chonghui Song,Xiaolong Zhao,Hao Li,Xianbo Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6725-6737
标识
DOI:10.1109/jbhi.2024.3442528
摘要

Automated retinal vessel segmentation is crucial for computer-aided clinical diagnosis and retinopathy screening. However, deep learning faces challenges in extracting complex intertwined structures and subtle small vessels from densely vascularized regions. To address these issues, we propose a novel segmentation model, called Geometry-Knowledge Embedded TransUNet (GKE-TUNet), which incorporates explicit embedding of topological features of retinal vessel anatomy. In the proposed GKE-TUNet model, a skeleton extraction network is pre-trained to extract the anatomical topology of retinal vessels from refined segmentation labels. During vessel segmentation, the dense skeleton graph is sampled as a graph of key-points and connections and is incorporated into the skip connection layer of TransUNet. The graph vertices are used as node features and correspond to positions in the low-level feature maps. The graph attention network (GAT) is used as the graph convolution backbone network to capture the shape semantics of vessels and the interaction of key locations along the topological direction. Finally, the node features obtained by graph convolution are read out as a sparse feature map based on their corresponding spatial coordinates. To address the problem of sparse feature maps, we employ convolution operators to fuse sparse feature maps with low-level dense feature maps. This fusion is weighted and connected to deep feature maps. Experimental results on the DRIVE, CHASE-DB1, and STARE datasets demonstrate the competitiveness of our proposed method compared to existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
strawberry完成签到,获得积分10
1秒前
panda发布了新的文献求助10
3秒前
Sivledy完成签到,获得积分10
4秒前
4秒前
wuyu发布了新的文献求助10
4秒前
LXR发布了新的文献求助10
4秒前
4秒前
5秒前
多金多金完成签到 ,获得积分10
7秒前
自信石头发布了新的文献求助10
7秒前
吧唧发布了新的文献求助10
8秒前
传奇3应助强健的匕采纳,获得10
8秒前
深情安青应助对映体采纳,获得10
8秒前
9秒前
儒雅的蜜粉完成签到,获得积分10
9秒前
zz发布了新的文献求助10
9秒前
9秒前
10秒前
陈丞澄发布了新的文献求助10
10秒前
蓦然发布了新的文献求助10
13秒前
13秒前
YCG完成签到 ,获得积分10
14秒前
竹筏过海应助淡然天问采纳,获得30
14秒前
浮游应助淡然天问采纳,获得10
14秒前
领导范儿应助柔弱的冬天采纳,获得30
15秒前
落后翠柏发布了新的文献求助10
16秒前
不安的成协完成签到,获得积分10
17秒前
17秒前
18秒前
长情听南发布了新的文献求助10
19秒前
锦慜发布了新的文献求助10
19秒前
顾矜应助蓦然采纳,获得10
20秒前
可爱的函函应助panda采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
李昕123发布了新的文献求助10
21秒前
21秒前
吧唧完成签到,获得积分10
22秒前
123456完成签到,获得积分10
23秒前
大模型应助wjy321采纳,获得10
23秒前
云漫山发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704