Whole-body metabolic connectivity framework with functional PET

串扰 计算机科学 协方差 人工智能 模式识别(心理学) 数学 物理 统计 光学
作者
Murray Bruce Reed,Magdalena Ponce de León,Chrysoula Vraka,Ivo Rausch,Godber Mathis Godbersen,Valentin Popper,Barbara Katharina Geist,Arkadiusz Komorowski,Lukas Nics,Clemens Schmidt,Sebastian Klug,Werner Langsteger,Georgios Karanikas,Tatjana Traub‐Weidinger,Andreas Hahn,Rupert Lanzenberger,Marcus Hacker
出处
期刊:NeuroImage [Elsevier]
卷期号:271: 120030-120030 被引量:13
标识
DOI:10.1016/j.neuroimage.2023.120030
摘要

The nervous and circulatory system interconnects the various organs of the human body, building hierarchically organized subsystems, enabling fine-tuned, metabolically expensive brain-body and inter-organ crosstalk to appropriately adapt to internal and external demands. A deviation or failure in the function of a single organ or subsystem could trigger unforeseen biases or dysfunctions of the entire network, leading to maladaptive physiological or psychological responses. Therefore, quantifying these networks in healthy individuals and patients may help further our understanding of complex disorders involving body-brain crosstalk. Here we present a generalized framework to automatically estimate metabolic inter-organ connectivity utilizing whole-body functional positron emission tomography (fPET). The developed framework was applied to 16 healthy subjects (mean age ± SD, 25 ± 6 years; 13 female) that underwent one dynamic 18F-FDG PET/CT scan. Multiple procedures of organ segmentation (manual, automatic, circular volumes) and connectivity estimation (polynomial fitting, spatiotemporal filtering, covariance matrices) were compared to provide an optimized thorough overview of the workflow. The proposed approach was able to estimate the metabolic connectivity patterns within brain regions and organs as well as their interactions. Automated organ delineation, but not simplified circular volumes, showed high agreement with manual delineation. Polynomial fitting yielded similar connectivity as spatiotemporal filtering at the individual subject level. Furthermore, connectivity measures and group-level covariance matrices did not match. The strongest brain-body connectivity was observed for the liver and kidneys. The proposed framework offers novel opportunities towards analyzing metabolic function from a systemic, hierarchical perspective in a multitude of physiological pathological states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助XL神放采纳,获得10
1秒前
minmin发布了新的文献求助10
1秒前
pterionGao发布了新的文献求助10
1秒前
1秒前
badjack完成签到,获得积分10
2秒前
2秒前
ggg发布了新的文献求助10
3秒前
4秒前
神经网络模型完成签到,获得积分10
5秒前
5秒前
今后应助初遇之时最暖采纳,获得10
5秒前
6秒前
6秒前
共享精神应助阿宋采纳,获得10
6秒前
6秒前
suda发布了新的文献求助10
6秒前
7秒前
idannn发布了新的文献求助10
8秒前
派大星完成签到,获得积分20
9秒前
噗哩大王发布了新的文献求助30
9秒前
养生坤坤发布了新的文献求助10
9秒前
hexinyu发布了新的文献求助10
10秒前
10秒前
11秒前
qq发布了新的文献求助10
12秒前
王小白发布了新的文献求助10
13秒前
Tonson应助roooosewang采纳,获得10
13秒前
13秒前
13秒前
13秒前
15秒前
那你撒泼发布了新的文献求助10
15秒前
小马关注了科研通微信公众号
15秒前
16秒前
ziwo发布了新的文献求助10
16秒前
sopha完成签到,获得积分10
17秒前
he发布了新的文献求助10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得30
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091