Whole-body metabolic connectivity framework with functional PET

串扰 计算机科学 协方差 人工智能 模式识别(心理学) 数学 物理 统计 光学
作者
Murray Bruce Reed,Magdalena Ponce de León,Chrysoula Vraka,Ivo Rausch,Godber Mathis Godbersen,Valentin Popper,Barbara Katharina Geist,Arkadiusz Komorowski,Lukas Nics,Clemens Schmidt,Sebastian Klug,Werner Langsteger,Georgios Karanikas,Tatjana Traub‐Weidinger,Andreas Hahn,Rupert Lanzenberger,Marcus Hacker
出处
期刊:NeuroImage [Elsevier]
卷期号:271: 120030-120030 被引量:13
标识
DOI:10.1016/j.neuroimage.2023.120030
摘要

The nervous and circulatory system interconnects the various organs of the human body, building hierarchically organized subsystems, enabling fine-tuned, metabolically expensive brain-body and inter-organ crosstalk to appropriately adapt to internal and external demands. A deviation or failure in the function of a single organ or subsystem could trigger unforeseen biases or dysfunctions of the entire network, leading to maladaptive physiological or psychological responses. Therefore, quantifying these networks in healthy individuals and patients may help further our understanding of complex disorders involving body-brain crosstalk. Here we present a generalized framework to automatically estimate metabolic inter-organ connectivity utilizing whole-body functional positron emission tomography (fPET). The developed framework was applied to 16 healthy subjects (mean age ± SD, 25 ± 6 years; 13 female) that underwent one dynamic 18F-FDG PET/CT scan. Multiple procedures of organ segmentation (manual, automatic, circular volumes) and connectivity estimation (polynomial fitting, spatiotemporal filtering, covariance matrices) were compared to provide an optimized thorough overview of the workflow. The proposed approach was able to estimate the metabolic connectivity patterns within brain regions and organs as well as their interactions. Automated organ delineation, but not simplified circular volumes, showed high agreement with manual delineation. Polynomial fitting yielded similar connectivity as spatiotemporal filtering at the individual subject level. Furthermore, connectivity measures and group-level covariance matrices did not match. The strongest brain-body connectivity was observed for the liver and kidneys. The proposed framework offers novel opportunities towards analyzing metabolic function from a systemic, hierarchical perspective in a multitude of physiological pathological states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助红火采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
喏晨发布了新的文献求助10
2秒前
2秒前
懵懂的书本完成签到,获得积分20
3秒前
pianjian发布了新的文献求助10
5秒前
6秒前
立军完成签到,获得积分10
6秒前
风偏偏发布了新的文献求助10
6秒前
7秒前
分析法FXF应助Jack采纳,获得10
9秒前
10秒前
小蘑菇应助Gumiano采纳,获得10
10秒前
10秒前
wu完成签到,获得积分10
10秒前
充电宝应助蜡笔小猪采纳,获得10
10秒前
儒雅致远完成签到,获得积分10
11秒前
leona发布了新的文献求助10
12秒前
13秒前
Meteor636发布了新的文献求助10
13秒前
Maestro_S应助fafafa采纳,获得10
15秒前
hh完成签到 ,获得积分10
17秒前
孤独的鹰完成签到,获得积分10
17秒前
18秒前
web发布了新的文献求助10
19秒前
小小鱼完成签到,获得积分10
19秒前
Swin完成签到,获得积分10
20秒前
小远远完成签到,获得积分10
21秒前
22秒前
宁好完成签到 ,获得积分10
22秒前
刘一严完成签到 ,获得积分10
22秒前
WYQX完成签到,获得积分10
23秒前
yangyangll发布了新的文献求助10
24秒前
24秒前
且行丶且努力完成签到,获得积分10
24秒前
yiban发布了新的文献求助10
26秒前
26秒前
白开水完成签到,获得积分10
27秒前
在水一方应助婵羽采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838