亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Whole-body metabolic connectivity framework with functional PET

串扰 计算机科学 协方差 人工智能 模式识别(心理学) 数学 物理 统计 光学
作者
Murray Bruce Reed,Magdalena Ponce de León,Chrysoula Vraka,Ivo Rausch,Godber Mathis Godbersen,Valentin Popper,Barbara Katharina Geist,Arkadiusz Komorowski,Lukas Nics,Clemens Schmidt,Sebastian Klug,Werner Langsteger,Georgios Karanikas,Tatjana Traub‐Weidinger,Andreas Hahn,Rupert Lanzenberger,Marcus Hacker
出处
期刊:NeuroImage [Elsevier]
卷期号:271: 120030-120030 被引量:13
标识
DOI:10.1016/j.neuroimage.2023.120030
摘要

The nervous and circulatory system interconnects the various organs of the human body, building hierarchically organized subsystems, enabling fine-tuned, metabolically expensive brain-body and inter-organ crosstalk to appropriately adapt to internal and external demands. A deviation or failure in the function of a single organ or subsystem could trigger unforeseen biases or dysfunctions of the entire network, leading to maladaptive physiological or psychological responses. Therefore, quantifying these networks in healthy individuals and patients may help further our understanding of complex disorders involving body-brain crosstalk. Here we present a generalized framework to automatically estimate metabolic inter-organ connectivity utilizing whole-body functional positron emission tomography (fPET). The developed framework was applied to 16 healthy subjects (mean age ± SD, 25 ± 6 years; 13 female) that underwent one dynamic 18F-FDG PET/CT scan. Multiple procedures of organ segmentation (manual, automatic, circular volumes) and connectivity estimation (polynomial fitting, spatiotemporal filtering, covariance matrices) were compared to provide an optimized thorough overview of the workflow. The proposed approach was able to estimate the metabolic connectivity patterns within brain regions and organs as well as their interactions. Automated organ delineation, but not simplified circular volumes, showed high agreement with manual delineation. Polynomial fitting yielded similar connectivity as spatiotemporal filtering at the individual subject level. Furthermore, connectivity measures and group-level covariance matrices did not match. The strongest brain-body connectivity was observed for the liver and kidneys. The proposed framework offers novel opportunities towards analyzing metabolic function from a systemic, hierarchical perspective in a multitude of physiological pathological states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啾啾尼泊尔完成签到,获得积分10
31秒前
gszy1975完成签到,获得积分10
42秒前
烟花应助哈哈哈哈嗝屁采纳,获得30
48秒前
香蕉觅云应助清泉采纳,获得10
48秒前
56秒前
57秒前
xzy998发布了新的文献求助50
1分钟前
YifanWang完成签到,获得积分0
1分钟前
李志全完成签到 ,获得积分10
1分钟前
Ava应助东溟渔夫采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小白发布了新的文献求助10
1分钟前
牛牛月饼发布了新的文献求助30
1分钟前
2分钟前
东溟渔夫发布了新的文献求助10
2分钟前
牛牛月饼完成签到,获得积分10
2分钟前
Akim应助东溟渔夫采纳,获得10
2分钟前
BBQ关闭了BBQ文献求助
2分钟前
2分钟前
3分钟前
v哈哈发布了新的文献求助10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
Ming发布了新的文献求助10
4分钟前
SciGPT应助Ming采纳,获得10
4分钟前
瘦瘦的师发布了新的文献求助10
4分钟前
大模型应助zhengzhster采纳,获得10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
自律发布了新的文献求助10
5分钟前
自律完成签到,获得积分10
5分钟前
BBQ发布了新的文献求助10
5分钟前
Ezekiel给Ezekiel的求助进行了留言
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
BBQ完成签到,获得积分10
5分钟前
lim完成签到,获得积分10
6分钟前
6分钟前
zhengzhster发布了新的文献求助10
6分钟前
小邓完成签到,获得积分10
6分钟前
可乐发布了新的文献求助30
6分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862399
关于积分的说明 15107785
捐赠科研通 4823068
什么是DOI,文献DOI怎么找? 2581898
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494433