Group-wise cortical parcellation based on structural connectivity and hierarchical clustering

雅卡索引 层次聚类 聚类分析 树状图 计算机科学 模式识别(心理学) 人工智能 分割 细分 数学 地理 遗传多样性 社会学 人口学 考古 人口
作者
Joaquín Molina,Cristóbal Mendoza,Claudio Román,Josselin Houenou,Cyril Poupon,Jean‐François Mangin,Wael El‐Deredy,C. Hernández,Pamela Guevara
标识
DOI:10.1117/12.2670138
摘要

This paper presents a new cortical parcellation method based on group-wise connectivity and hierarchical clustering. A preliminary sub-parcellation is performed using intra-subject and inter-subject fiber clustering to obtain representative bundles among subjects with similar shapes and trajectories. The sub-parcellation is obtained by intersecting fiber clusters with cortical meshes. Next, mean connectivity and mean overlap matrices are computed over the sub-parcels to obtain spatial and connectivity information. To hierarchize the information, we propose to weight both matrices, to obtain an affinity graph, and then a dendrogram to merge or divide parcels by their hierarchy. Finally, to obtain homogeneous parcels, the method computes morphological operations. By selecting a different number of clusters over the dendrogram, the method obtains a different number of parcels and a variation in the resulting parcel sizes, depending on the parameters used. We computed the coefficient of variation (CV ) of the parcel size to evaluate the homogeneity of the parcels. Preliminary results suggest that the use of representative clusters and the integration of sub-parcel overlap and connectivity strength provide useful information to generate cortical parcellations at different levels of granularity. Even results are preliminary, this novel method allows researchers to add group-wise connectivity strength and spatial information for the construction of diffusion-based parcellations. Future work will include a detailed analysis of parameters, such as the matrix weights and the number of sub-parcel clusters, and the generation of hierarchical parcellations to improve the insight into the cortex subdivision and hierarchy among parcels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助萌萌采纳,获得10
刚刚
lihuahui发布了新的文献求助10
3秒前
汉堡包应助不安的紫翠采纳,获得10
3秒前
希望天下0贩的0应助Splaink采纳,获得10
4秒前
zzzz发布了新的文献求助20
4秒前
张叮当完成签到,获得积分10
6秒前
黑色土豆发布了新的文献求助10
7秒前
bkagyin应助韩延璐采纳,获得30
8秒前
淡然沛蓝完成签到,获得积分10
8秒前
lihuahui完成签到,获得积分10
9秒前
10秒前
风中凌乱完成签到 ,获得积分10
12秒前
辣辣辣辣辣完成签到,获得积分10
12秒前
13秒前
可靠sue发布了新的文献求助10
14秒前
wuwa完成签到,获得积分10
15秒前
15秒前
小蘑菇应助haisiaa采纳,获得10
16秒前
16秒前
Sid应助c2采纳,获得100
17秒前
17秒前
18秒前
白熊完成签到,获得积分10
18秒前
陶醉的熊完成签到,获得积分10
18秒前
时笙发布了新的文献求助10
19秒前
23秒前
小蘑菇应助黑色土豆采纳,获得10
23秒前
可靠sue完成签到,获得积分10
24秒前
激情的白枫完成签到 ,获得积分10
27秒前
咕咕发布了新的文献求助10
28秒前
28秒前
慕青应助ningqing采纳,获得10
28秒前
罗里完成签到 ,获得积分10
31秒前
32秒前
32秒前
haisiaa发布了新的文献求助10
35秒前
州府十三发布了新的文献求助10
35秒前
35秒前
科研通AI5应助时笙采纳,获得20
36秒前
亚鹏完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176