Artificial Intelligence Enabled Histological Prediction of Remission or Activity and Clinical Outcomes in Ulcerative Colitis

溃疡性结肠炎 医学 胃肠病学 内科学 疾病
作者
Marietta Iacucci,Tommaso Lorenzo Parigi,Rocío del Amor,Pablo Meseguer,Giulio Mandelli,Anna Bozzola,Alina Bazarova,Pradeep Bhandari,Raf Bisschops,Silvio Danese,Gert De Hertogh,José G. Ferraz,Martin Goetz,Enrico Grisan,Xianyong Gui,Bu Hayee,Ralf Kießlich,Mark Lazarev,Remo Panaccione,Adolfo Parra‐Blanco,Luca Pastorelli,Timo Räth,Elin Synnøve Røyset,Gian Eugenio Tontini,Michael Vieth,Davide Zardo,Subrata Ghosh,Valery Naranjo,Vincenzo Villanacci
出处
期刊:Gastroenterology [Elsevier]
卷期号:164 (7): 1180-1188.e2 被引量:39
标识
DOI:10.1053/j.gastro.2023.02.031
摘要

Microscopic inflammation has significant prognostic value in ulcerative colitis (UC); however, its assessment is complex with high interobserver variability. We aimed to develop and validate an artificial intelligence (AI) computer-aided diagnosis system to evaluate UC biopsies and predict prognosis.A total of 535 digitalized biopsies (273 patients) were graded according to the PICaSSO Histologic Remission Index (PHRI), Robarts, and Nancy Histological Index. A convolutional neural network classifier was trained to distinguish remission from activity on a subset of 118 biopsies, calibrated on 42 and tested on 375. The model was additionally tested to predict the corresponding endoscopic assessment and occurrence of flares at 12 months. The system output was compared with human assessment. Diagnostic performance was reported as sensitivity, specificity, prognostic prediction through Kaplan-Meier, and hazard ratios of flares between active and remission groups. We externally validated the model in 154 biopsies (58 patients) with similar characteristics but more histologically active patients.The system distinguished histological activity/remission with sensitivity and specificity of 89% and 85% (PHRI), 94% and 76% (Robarts Histological Index), and 89% and 79% (Nancy Histological Index). The model predicted the corresponding endoscopic remission/activity with 79% and 82% accuracy for UC endoscopic index of severity and Paddington International virtual ChromoendoScopy ScOre, respectively. The hazard ratio for disease flare-up between histological activity/remission groups according to pathologist-assessed PHRI was 3.56, and 4.64 for AI-assessed PHRI. Both histology and outcome prediction were confirmed in the external validation cohort.We developed and validated an AI model that distinguishes histologic remission/activity in biopsies of UC and predicts flare-ups. This can expedite, standardize, and enhance histologic assessment in practice and trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助陈米米采纳,获得10
1秒前
屹舟完成签到 ,获得积分10
2秒前
斯文败类应助紫色奶萨采纳,获得10
2秒前
paperdl应助王泉林采纳,获得30
4秒前
anuo发布了新的文献求助30
4秒前
科目三应助wangayting采纳,获得10
5秒前
5秒前
6秒前
6秒前
研友_V8Qmr8完成签到,获得积分10
6秒前
彭于晏应助Apple采纳,获得10
7秒前
9秒前
科研通AI2S应助冲塔亚德采纳,获得10
9秒前
刘星星完成签到,获得积分10
9秒前
9秒前
bystanding发布了新的文献求助10
10秒前
AAA下水工王哥完成签到,获得积分10
10秒前
小二郎应助研友_V8Qmr8采纳,获得10
11秒前
12秒前
你比我笨发布了新的文献求助10
12秒前
六七七完成签到,获得积分10
12秒前
wwh完成签到,获得积分10
13秒前
13秒前
朴实雨竹完成签到,获得积分10
13秒前
淡淡夏柳发布了新的文献求助10
13秒前
LI发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
nykal完成签到 ,获得积分10
15秒前
17秒前
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129758
求助须知:如何正确求助?哪些是违规求助? 2780521
关于积分的说明 7748895
捐赠科研通 2435880
什么是DOI,文献DOI怎么找? 1294339
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570