Artificial Intelligence Modeling to Predict Periprosthetic Infection and Explantation following Implant-Based Reconstruction

假体周围 医学 围手术期 接收机工作特性 植入 外科 假肢 算法 关节置换术 内科学 计算机科学
作者
Abbas M. Hassan,Andrea Biaggi-Ondina,Malke Asaad,Natalie Morris,Jun Liu,Jesse C. Selber,Charles E. Butler
出处
期刊:Plastic and Reconstructive Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:152 (5): 929-938 被引量:5
标识
DOI:10.1097/prs.0000000000010345
摘要

Despite improvements in prosthesis design and surgical techniques, periprosthetic infection and explantation rates following implant-based reconstruction (IBR) remain relatively high. Artificial intelligence is an extremely powerful predictive tool that involves machine learning (ML) algorithms. We sought to develop, validate, and evaluate the use of ML algorithms to predict complications of IBR.A comprehensive review of patients who underwent IBR from January of 2018 to December of 2019 was conducted. Nine supervised ML algorithms were developed to predict periprosthetic infection and explantation. Patient data were randomly divided into training (80%) and testing (20%) sets.The authors identified 481 patients (694 reconstructions) with a mean ± SD age of 50.0 ± 11.5 years, mean ± SD body mass index of 26.7 ± 4.8 kg/m 2 , and median follow-up time of 16.1 months (range, 11.9 to 3.2 months). Periprosthetic infection developed in 113 of the reconstructions (16.3%), and explantation was required with 82 (11.8%) of them. ML demonstrated good discriminatory performance in predicting periprosthetic infection and explantation (area under the receiver operating characteristic curve, 0.73 and 0.78, respectively), and identified nine and 12 significant predictors of periprosthetic infection and explantation, respectively.ML algorithms trained using readily available perioperative clinical data accurately predict periprosthetic infection and explantation following IBR. The authors' findings support incorporating ML models into perioperative assessment of patients undergoing IBR to provide data-driven, patient-specific risk assessment to aid individualized patient counseling, shared decision-making, and presurgical optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhydeppt完成签到,获得积分10
1秒前
陌上尘开完成签到 ,获得积分10
1秒前
对苏完成签到,获得积分10
1秒前
1秒前
幽默连碧完成签到,获得积分10
1秒前
LX完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
於成协完成签到,获得积分10
2秒前
一二完成签到,获得积分10
4秒前
Sherlly发布了新的文献求助10
4秒前
龙卡烧烤店完成签到,获得积分0
4秒前
科研柠檬精酸酸完成签到,获得积分10
4秒前
5秒前
5秒前
大明完成签到,获得积分10
6秒前
6秒前
8秒前
ky0927完成签到 ,获得积分10
8秒前
仲金龙发布了新的文献求助10
8秒前
lin发布了新的文献求助10
8秒前
dexrer发布了新的文献求助10
9秒前
weiqimin发布了新的文献求助10
9秒前
月月完成签到,获得积分10
9秒前
寒冷的寻菱完成签到,获得积分10
9秒前
9秒前
eric完成签到 ,获得积分10
9秒前
无聊的翠芙完成签到,获得积分10
10秒前
孝顺的尔丝完成签到,获得积分10
10秒前
11秒前
嗯呢发布了新的文献求助30
12秒前
w我我我完成签到,获得积分10
12秒前
yyw发布了新的文献求助10
12秒前
cxt发布了新的文献求助10
12秒前
13秒前
李健应助奇凌采纳,获得10
13秒前
13秒前
温暖芷文完成签到,获得积分10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167746
求助须知:如何正确求助?哪些是违规求助? 2819117
关于积分的说明 7925260
捐赠科研通 2479015
什么是DOI,文献DOI怎么找? 1320596
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443