Neumann边界条件
Robin边界条件
混合边界条件
边值问题
柯西边界条件
Dirichlet边界条件
数学分析
无滑移条件
数学
CFD中的边界条件
Poincaré–Steklov算子
自由边界问题
边界(拓扑)
打滑(空气动力学)
独特性
物理
热力学
出处
期刊:Proceedings
[Cambridge University Press]
日期:2023-03-02
卷期号:: 1-38
被引量:3
摘要
In this paper, we consider the chemotaxis-Navier-Stokes model with realistic boundary conditions matching the experiments of Hillesdon, Kessler et al. in a two-dimensional periodic strip domain. For the lower boundary, we impose the usual homogeneous Neumann-Neumann-Dirichlet boundary condition. While, for the upper boundary, since it is open to the atmosphere, we consider three kinds of different mixed non-homogeneous boundary conditions, that is, (i) Neumann-Dirichlet-Navier slip boundary condition; (ii) Zero flux-Dirichlet-Navier slip boundary condition; (iii) Zero flux-Robin-Navier slip boundary condition. For boundary conditions (i) and (iii), the existence and uniqueness of global classical solutions for any initial data and any large chemotactic sensitivity coefficient is established, and for boundary condition (ii), the existence and uniqueness of global classical solutions for any initial data and small chemotactic sensitivity coefficient is proved.
科研通智能强力驱动
Strongly Powered by AbleSci AI