已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A color-based deep-learning approach for tissue slide lung cancer classification

卷积神经网络 计算机科学 人工智能 RGB颜色模型 深度学习 模式识别(心理学) HSL和HSV色彩空间 肺癌 人工神经网络 病理 医学 病毒 病毒学
作者
Vidhi Bishnoi,Nidhi Goel
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105151-105151 被引量:13
标识
DOI:10.1016/j.bspc.2023.105151
摘要

Non-Small Cell Lung Cancer is the most common type of lung cancer, accounting for more than 80% of all cases. The analysis of histopathological images is the appropriate way to detect lung cancer in its initial stages. However, due to the heterogeneous patterns of molecular structures and the high magnification factor, the classification of whole slide images is difficult. Furthermore, these large-pixel images cannot be considered directly due to the high computational requirements. Several deep-learning models have been developed for the classification of histopathological images, but only in the default RGB format. Existing models are complex and rely on pathologist annotations which increases the computational cost and time. The present paper proposes a deep-learning framework, a Color-based Dilated Convolutional Neural Network (CD-CNN) for the multi-class classification of patch-based whole slide images of lung cancer. The proposed CD-CNN framework includes data preparation, color space transformation, and the classification stages. It thoroughly examines the impact of five color spaces on classification performance. The proposed model was also compared to three pre-trained models and the Convolutional Neural Network model on three different datasets namely: The Cancer Genome Atlas dataset, the Clinical Proteomic Tumor Analysis Consortium cohorts, and the LC25000 dataset. The analysis of all the models reveals that the HSV color space outperforms the other transformations for all of the datasets tested. The results depict that the proposed CD-CNN achieved the best classification results in HSV color space for all three datasets i.e. accuracy of 0.97–0.99, precision, recall, and F1 score 0.97–0.98 and AUC value of 0.970–0.984. In addition, the highest value of the kappa score 0.986 has been achieved by the proposed model. These findings demonstrate the efficacy of the proposed method and show an improvement in diagnostic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
春天的粥完成签到 ,获得积分10
4秒前
8秒前
SOBER发布了新的文献求助10
10秒前
大帅比完成签到 ,获得积分10
12秒前
可一可再完成签到 ,获得积分10
13秒前
酷波er应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
15秒前
15秒前
SOBER完成签到,获得积分10
19秒前
jie完成签到 ,获得积分10
19秒前
626发布了新的文献求助10
21秒前
一枚小豆发布了新的文献求助10
22秒前
23秒前
zgw发布了新的文献求助10
23秒前
李健应助blue2021采纳,获得10
24秒前
黄芪2号完成签到,获得积分20
28秒前
pass完成签到 ,获得积分10
31秒前
久久丫完成签到 ,获得积分10
34秒前
jie完成签到 ,获得积分10
34秒前
科研通AI6应助blue2021采纳,获得10
36秒前
外向的灵槐完成签到,获得积分10
37秒前
黄婷完成签到,获得积分10
38秒前
yingying完成签到 ,获得积分10
38秒前
zgw完成签到,获得积分10
40秒前
specium完成签到,获得积分10
42秒前
风趣的飞荷完成签到,获得积分10
43秒前
科研通AI6应助77采纳,获得10
43秒前
xiuxiuzhang完成签到 ,获得积分10
44秒前
orixero应助blue2021采纳,获得10
47秒前
梁真真完成签到 ,获得积分10
48秒前
49秒前
50秒前
TongKY完成签到 ,获得积分10
50秒前
韩55应助77采纳,获得10
51秒前
52秒前
风雨完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14889959
捐赠科研通 4727057
什么是DOI,文献DOI怎么找? 2545906
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236