A color-based deep-learning approach for tissue slide lung cancer classification

卷积神经网络 计算机科学 人工智能 RGB颜色模型 深度学习 模式识别(心理学) HSL和HSV色彩空间 肺癌 人工神经网络 病理 医学 病毒 病毒学
作者
Vidhi Bishnoi,Nidhi Goel
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105151-105151 被引量:2
标识
DOI:10.1016/j.bspc.2023.105151
摘要

Non-Small Cell Lung Cancer is the most common type of lung cancer, accounting for more than 80% of all cases. The analysis of histopathological images is the appropriate way to detect lung cancer in its initial stages. However, due to the heterogeneous patterns of molecular structures and the high magnification factor, the classification of whole slide images is difficult. Furthermore, these large-pixel images cannot be considered directly due to the high computational requirements. Several deep-learning models have been developed for the classification of histopathological images, but only in the default RGB format. Existing models are complex and rely on pathologist annotations which increases the computational cost and time. The present paper proposes a deep-learning framework, a Color-based Dilated Convolutional Neural Network (CD-CNN) for the multi-class classification of patch-based whole slide images of lung cancer. The proposed CD-CNN framework includes data preparation, color space transformation, and the classification stages. It thoroughly examines the impact of five color spaces on classification performance. The proposed model was also compared to three pre-trained models and the Convolutional Neural Network model on three different datasets namely: The Cancer Genome Atlas dataset, the Clinical Proteomic Tumor Analysis Consortium cohorts, and the LC25000 dataset. The analysis of all the models reveals that the HSV color space outperforms the other transformations for all of the datasets tested. The results depict that the proposed CD-CNN achieved the best classification results in HSV color space for all three datasets i.e. accuracy of 0.97–0.99, precision, recall, and F1 score 0.97–0.98 and AUC value of 0.970–0.984. In addition, the highest value of the kappa score 0.986 has been achieved by the proposed model. These findings demonstrate the efficacy of the proposed method and show an improvement in diagnostic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑宝坨完成签到,获得积分10
刚刚
刚刚
万能图书馆应助NPC采纳,获得10
2秒前
Lucas应助爱笑翠梅采纳,获得10
2秒前
星辰大海应助你好啊采纳,获得10
4秒前
多喝水我完成签到 ,获得积分10
5秒前
Jerry完成签到,获得积分10
9秒前
10秒前
123~!完成签到,获得积分10
12秒前
ASZXDW完成签到,获得积分10
13秒前
爱笑翠梅发布了新的文献求助10
13秒前
14秒前
喝奶茶睡不着完成签到,获得积分10
19秒前
852应助1huiqina采纳,获得30
20秒前
甜甜圈发布了新的文献求助10
20秒前
欧阳半仙完成签到,获得积分10
21秒前
jessie完成签到,获得积分10
22秒前
cy完成签到,获得积分10
24秒前
潇洒的擎苍完成签到,获得积分10
24秒前
爱笑翠梅完成签到,获得积分20
26秒前
王wangWANG完成签到,获得积分10
26秒前
忐忑的蛋糕完成签到,获得积分10
28秒前
工大机械完成签到,获得积分10
28秒前
科研小辣机完成签到 ,获得积分10
29秒前
高贵的思天完成签到,获得积分10
32秒前
00完成签到,获得积分10
32秒前
36秒前
36秒前
36秒前
朴实草莓完成签到,获得积分20
38秒前
38秒前
hnxxangel完成签到,获得积分10
39秒前
Leone发布了新的文献求助10
41秒前
时尚的雅柏完成签到 ,获得积分10
42秒前
FashionBoy应助火星上盼山采纳,获得10
44秒前
44秒前
Duolalala发布了新的文献求助10
46秒前
46秒前
47秒前
52秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043