亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A color-based deep-learning approach for tissue slide lung cancer classification

卷积神经网络 计算机科学 人工智能 RGB颜色模型 深度学习 模式识别(心理学) HSL和HSV色彩空间 肺癌 人工神经网络 病理 医学 病毒 病毒学
作者
Vidhi Bishnoi,Nidhi Goel
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105151-105151 被引量:13
标识
DOI:10.1016/j.bspc.2023.105151
摘要

Non-Small Cell Lung Cancer is the most common type of lung cancer, accounting for more than 80% of all cases. The analysis of histopathological images is the appropriate way to detect lung cancer in its initial stages. However, due to the heterogeneous patterns of molecular structures and the high magnification factor, the classification of whole slide images is difficult. Furthermore, these large-pixel images cannot be considered directly due to the high computational requirements. Several deep-learning models have been developed for the classification of histopathological images, but only in the default RGB format. Existing models are complex and rely on pathologist annotations which increases the computational cost and time. The present paper proposes a deep-learning framework, a Color-based Dilated Convolutional Neural Network (CD-CNN) for the multi-class classification of patch-based whole slide images of lung cancer. The proposed CD-CNN framework includes data preparation, color space transformation, and the classification stages. It thoroughly examines the impact of five color spaces on classification performance. The proposed model was also compared to three pre-trained models and the Convolutional Neural Network model on three different datasets namely: The Cancer Genome Atlas dataset, the Clinical Proteomic Tumor Analysis Consortium cohorts, and the LC25000 dataset. The analysis of all the models reveals that the HSV color space outperforms the other transformations for all of the datasets tested. The results depict that the proposed CD-CNN achieved the best classification results in HSV color space for all three datasets i.e. accuracy of 0.97–0.99, precision, recall, and F1 score 0.97–0.98 and AUC value of 0.970–0.984. In addition, the highest value of the kappa score 0.986 has been achieved by the proposed model. These findings demonstrate the efficacy of the proposed method and show an improvement in diagnostic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的香菱完成签到 ,获得积分10
2秒前
8秒前
12秒前
桃子e发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
20秒前
36秒前
46秒前
难过忆山发布了新的文献求助10
48秒前
英姑应助Zz采纳,获得10
49秒前
所所应助科研通管家采纳,获得10
55秒前
量子星尘发布了新的文献求助10
59秒前
hq完成签到 ,获得积分10
1分钟前
1分钟前
poki完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
2分钟前
天天快乐应助Fluoxtine采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
twk发布了新的文献求助10
3分钟前
3分钟前
研友_VZG7GZ应助粗暴的坤采纳,获得10
4分钟前
4分钟前
科研通AI6.1应助jyy采纳,获得10
4分钟前
牛马研究生完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
思源应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
马成双完成签到 ,获得积分10
5分钟前
烨枫晨曦完成签到,获得积分10
5分钟前
江梁发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617