A color-based deep-learning approach for tissue slide lung cancer classification

卷积神经网络 计算机科学 人工智能 RGB颜色模型 深度学习 模式识别(心理学) HSL和HSV色彩空间 肺癌 人工神经网络 病理 医学 病毒学 病毒
作者
Vidhi Bishnoi,Nidhi Goel
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105151-105151 被引量:13
标识
DOI:10.1016/j.bspc.2023.105151
摘要

Non-Small Cell Lung Cancer is the most common type of lung cancer, accounting for more than 80% of all cases. The analysis of histopathological images is the appropriate way to detect lung cancer in its initial stages. However, due to the heterogeneous patterns of molecular structures and the high magnification factor, the classification of whole slide images is difficult. Furthermore, these large-pixel images cannot be considered directly due to the high computational requirements. Several deep-learning models have been developed for the classification of histopathological images, but only in the default RGB format. Existing models are complex and rely on pathologist annotations which increases the computational cost and time. The present paper proposes a deep-learning framework, a Color-based Dilated Convolutional Neural Network (CD-CNN) for the multi-class classification of patch-based whole slide images of lung cancer. The proposed CD-CNN framework includes data preparation, color space transformation, and the classification stages. It thoroughly examines the impact of five color spaces on classification performance. The proposed model was also compared to three pre-trained models and the Convolutional Neural Network model on three different datasets namely: The Cancer Genome Atlas dataset, the Clinical Proteomic Tumor Analysis Consortium cohorts, and the LC25000 dataset. The analysis of all the models reveals that the HSV color space outperforms the other transformations for all of the datasets tested. The results depict that the proposed CD-CNN achieved the best classification results in HSV color space for all three datasets i.e. accuracy of 0.97–0.99, precision, recall, and F1 score 0.97–0.98 and AUC value of 0.970–0.984. In addition, the highest value of the kappa score 0.986 has been achieved by the proposed model. These findings demonstrate the efficacy of the proposed method and show an improvement in diagnostic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上杉绘梨衣完成签到,获得积分10
刚刚
emoji发布了新的文献求助10
刚刚
风清扬发布了新的文献求助30
1秒前
小六子发布了新的文献求助10
1秒前
2秒前
小苏打发布了新的文献求助10
2秒前
2秒前
李健应助佐zzz采纳,获得30
3秒前
许多年以后完成签到,获得积分10
4秒前
4秒前
清脆幻枫发布了新的文献求助10
5秒前
Owen应助波波采纳,获得10
5秒前
5秒前
6秒前
FashionBoy应助believe采纳,获得10
6秒前
丘比特应助卡尔采纳,获得10
6秒前
万诚信发布了新的文献求助10
6秒前
7秒前
Ava应助露似珍珠月似弓采纳,获得10
7秒前
7秒前
科研小白发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
哆啦的空间站应助gao采纳,获得10
9秒前
粗心的电源完成签到,获得积分10
9秒前
10秒前
guo发布了新的文献求助10
10秒前
桐桐应助想人陪采纳,获得10
11秒前
11秒前
思源应助看文献了采纳,获得10
11秒前
13秒前
大牛关注了科研通微信公众号
13秒前
bkagyin应助快来看文献采纳,获得10
13秒前
kk发布了新的文献求助10
13秒前
暴躁的梦发布了新的文献求助10
14秒前
wll完成签到,获得积分20
14秒前
14秒前
vikoel完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641