A color-based deep-learning approach for tissue slide lung cancer classification

卷积神经网络 计算机科学 人工智能 RGB颜色模型 深度学习 模式识别(心理学) HSL和HSV色彩空间 肺癌 人工神经网络 病理 医学 病毒学 病毒
作者
Vidhi Bishnoi,Nidhi Goel
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105151-105151 被引量:13
标识
DOI:10.1016/j.bspc.2023.105151
摘要

Non-Small Cell Lung Cancer is the most common type of lung cancer, accounting for more than 80% of all cases. The analysis of histopathological images is the appropriate way to detect lung cancer in its initial stages. However, due to the heterogeneous patterns of molecular structures and the high magnification factor, the classification of whole slide images is difficult. Furthermore, these large-pixel images cannot be considered directly due to the high computational requirements. Several deep-learning models have been developed for the classification of histopathological images, but only in the default RGB format. Existing models are complex and rely on pathologist annotations which increases the computational cost and time. The present paper proposes a deep-learning framework, a Color-based Dilated Convolutional Neural Network (CD-CNN) for the multi-class classification of patch-based whole slide images of lung cancer. The proposed CD-CNN framework includes data preparation, color space transformation, and the classification stages. It thoroughly examines the impact of five color spaces on classification performance. The proposed model was also compared to three pre-trained models and the Convolutional Neural Network model on three different datasets namely: The Cancer Genome Atlas dataset, the Clinical Proteomic Tumor Analysis Consortium cohorts, and the LC25000 dataset. The analysis of all the models reveals that the HSV color space outperforms the other transformations for all of the datasets tested. The results depict that the proposed CD-CNN achieved the best classification results in HSV color space for all three datasets i.e. accuracy of 0.97–0.99, precision, recall, and F1 score 0.97–0.98 and AUC value of 0.970–0.984. In addition, the highest value of the kappa score 0.986 has been achieved by the proposed model. These findings demonstrate the efficacy of the proposed method and show an improvement in diagnostic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chrisio应助蛋蛋白采纳,获得10
1秒前
1秒前
在水一方应助SHIKI采纳,获得10
1秒前
battle完成签到 ,获得积分10
1秒前
1秒前
香蕉觅云应助liu采纳,获得10
2秒前
小蘑菇应助高翔采纳,获得10
3秒前
corainder发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
Wow发布了新的文献求助10
4秒前
Lucas应助SZY采纳,获得10
5秒前
5秒前
FashionBoy应助谢同学采纳,获得10
5秒前
5秒前
5秒前
所所应助Sayhai采纳,获得10
5秒前
6秒前
有求必_应发布了新的文献求助10
6秒前
暮光不ling发布了新的文献求助10
7秒前
7秒前
孤独的夜行喵关注了科研通微信公众号
7秒前
7秒前
7秒前
mia发布了新的文献求助10
7秒前
7秒前
我的白起是国服完成签到 ,获得积分10
8秒前
蛋蛋白完成签到,获得积分20
9秒前
个性的紫菜应助yulia采纳,获得20
9秒前
9秒前
Gotyababy发布了新的文献求助10
9秒前
10秒前
10秒前
pakono发布了新的文献求助20
11秒前
科研通AI5应助温柔的婷采纳,获得30
11秒前
Sara发布了新的文献求助10
12秒前
斑驳发布了新的文献求助10
12秒前
秦艽发布了新的文献求助10
12秒前
乐乐应助无语的千儿采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403