A color-based deep-learning approach for tissue slide lung cancer classification

卷积神经网络 计算机科学 人工智能 RGB颜色模型 深度学习 模式识别(心理学) HSL和HSV色彩空间 肺癌 人工神经网络 病理 医学 病毒 病毒学
作者
Vidhi Bishnoi,Nidhi Goel
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105151-105151 被引量:13
标识
DOI:10.1016/j.bspc.2023.105151
摘要

Non-Small Cell Lung Cancer is the most common type of lung cancer, accounting for more than 80% of all cases. The analysis of histopathological images is the appropriate way to detect lung cancer in its initial stages. However, due to the heterogeneous patterns of molecular structures and the high magnification factor, the classification of whole slide images is difficult. Furthermore, these large-pixel images cannot be considered directly due to the high computational requirements. Several deep-learning models have been developed for the classification of histopathological images, but only in the default RGB format. Existing models are complex and rely on pathologist annotations which increases the computational cost and time. The present paper proposes a deep-learning framework, a Color-based Dilated Convolutional Neural Network (CD-CNN) for the multi-class classification of patch-based whole slide images of lung cancer. The proposed CD-CNN framework includes data preparation, color space transformation, and the classification stages. It thoroughly examines the impact of five color spaces on classification performance. The proposed model was also compared to three pre-trained models and the Convolutional Neural Network model on three different datasets namely: The Cancer Genome Atlas dataset, the Clinical Proteomic Tumor Analysis Consortium cohorts, and the LC25000 dataset. The analysis of all the models reveals that the HSV color space outperforms the other transformations for all of the datasets tested. The results depict that the proposed CD-CNN achieved the best classification results in HSV color space for all three datasets i.e. accuracy of 0.97–0.99, precision, recall, and F1 score 0.97–0.98 and AUC value of 0.970–0.984. In addition, the highest value of the kappa score 0.986 has been achieved by the proposed model. These findings demonstrate the efficacy of the proposed method and show an improvement in diagnostic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开飞机的小羊完成签到,获得积分10
1秒前
无极微光应助Tail采纳,获得20
2秒前
2秒前
2秒前
Robert发布了新的文献求助10
2秒前
aaa发布了新的文献求助10
3秒前
soar完成签到 ,获得积分10
3秒前
留胡子的松完成签到 ,获得积分10
4秒前
我是老大应助hehe采纳,获得10
5秒前
5秒前
6秒前
6秒前
dui发布了新的文献求助10
7秒前
今后应助超级幻梅采纳,获得10
9秒前
田様应助悦耳的乐巧采纳,获得10
10秒前
mpenny77发布了新的文献求助10
11秒前
丸子发布了新的文献求助10
13秒前
我是老大应助陈帅行采纳,获得10
13秒前
13秒前
zy完成签到 ,获得积分10
14秒前
15秒前
烟花应助风清扬采纳,获得10
15秒前
orbitvox完成签到,获得积分10
16秒前
相信相信的力量完成签到,获得积分10
16秒前
16秒前
上官若男应助哭泣以筠采纳,获得10
16秒前
17秒前
xixi给xixi的求助进行了留言
17秒前
亦亦完成签到 ,获得积分10
17秒前
mpenny77完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
19秒前
咖褐发布了新的文献求助10
19秒前
小曾发布了新的文献求助10
20秒前
20秒前
20秒前
俭朴映阳发布了新的文献求助10
21秒前
22秒前
Robert完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480697
求助须知:如何正确求助?哪些是违规求助? 4581819
关于积分的说明 14382394
捐赠科研通 4510450
什么是DOI,文献DOI怎么找? 2471803
邀请新用户注册赠送积分活动 1458216
关于科研通互助平台的介绍 1431896