Optimizing the Cell Painting assay for image-based profiling

仿形(计算机编程) 计算生物学 计算机科学 高尔基体 污渍 细胞 生物 内质网 人工智能 高含量筛选 细胞质 生物信息学 染色 细胞生物学 生物化学 遗传学 操作系统
作者
Beth A. Cimini,Srinivas Niranj Chandrasekaran,Maria Kost‐Alimova,Lisa Miller,Amy Goodale,Briana Fritchman,Patrick J. Byrne,Sakshi Garg,Nasim Jamali,David J. Logan,John Concannon,Charles-Hugues Lardeau,Elizabeth Mouchet,Shantanu Singh,Hamdah Shafqat Abbasi,Peter Aspesi,Justin D. Boyd,Tamara J. Gilbert,David Gnutt,Santosh Hariharan,Desiree Hernandez,Gisela Hormel,Karolina Juhani,Michelle Melanson,Lewis Mervin,Tiziana Monteverde,James Pilling,Adam Skepner,Susanne E. Swalley,Anita Vrcic,Erin Weisbart,Guy Williams,Shan Yu,Bolek Zapiec,Anne E. Carpenter
出处
期刊:Nature Protocols [Springer Nature]
卷期号:18 (7): 1981-2013 被引量:47
标识
DOI:10.1038/s41596-023-00840-9
摘要

In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications have been proven, including clustering chemical and genetic perturbations on the basis of their similar morphological impact, identifying disease phenotypes by observing differences in profiles between healthy and diseased cells and predicting assay outcomes by using machine learning, among many others. Here, we provide an updated protocol for the most popular assay for image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, Golgi apparatus, plasma membrane, endoplasmic reticulum and mitochondria. The original protocol was updated in 2016 on the basis of several years’ experience running it at two sites, after optimizing it by visual stain quality. Here, we describe the work of the Joint Undertaking for Morphological Profiling Cell Painting Consortium, to improve upon the assay via quantitative optimization by measuring the assay’s ability to detect morphological phenotypes and group similar perturbations together. The assay gives very robust outputs despite various changes to the protocol, and two vendors’ dyes work equivalently well. We present Cell Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell culture and image acquisition take 1–2 weeks for typically sized batches of ≤20 plates; feature extraction and data analysis take an additional 1–2 weeks. This protocol is an update to Nat. Protoc. 11, 1757–1774 (2016): https://doi.org/10.1038/nprot.2016.105 We provide an updated protocol for image-based profiling with Cell Painting. A detailed procedure, with standardized conditions for the assay, is presented, along with a comprehensive description of parameters to be considered when optimizing the assay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lujiokh完成签到,获得积分10
2秒前
starry完成签到 ,获得积分10
4秒前
凌代萱发布了新的文献求助20
5秒前
甜甜秋荷完成签到,获得积分10
8秒前
静默完成签到 ,获得积分10
9秒前
妮妮完成签到 ,获得积分10
9秒前
13秒前
李金奥完成签到 ,获得积分10
15秒前
shor0414完成签到 ,获得积分10
16秒前
Ulrica完成签到,获得积分10
19秒前
Airhug完成签到 ,获得积分10
19秒前
北城完成签到 ,获得积分10
19秒前
21秒前
CuKai完成签到,获得积分10
24秒前
薄荷小姐完成签到 ,获得积分10
24秒前
信封完成签到 ,获得积分10
25秒前
爱静静应助Ulrica采纳,获得10
27秒前
早日发nature完成签到 ,获得积分10
27秒前
feilong完成签到,获得积分10
27秒前
陈居居发布了新的文献求助10
28秒前
贾不可完成签到,获得积分10
28秒前
30秒前
濮阳盼曼完成签到,获得积分10
31秒前
564654SDA完成签到,获得积分10
35秒前
123完成签到 ,获得积分10
36秒前
泓凯骏完成签到 ,获得积分10
37秒前
自由的无色完成签到 ,获得积分10
38秒前
才下眉头完成签到,获得积分10
40秒前
木木杉完成签到 ,获得积分10
41秒前
LIKUN完成签到,获得积分10
42秒前
王醉山完成签到,获得积分10
43秒前
Cold-Drink-Shop完成签到,获得积分10
45秒前
三石完成签到,获得积分10
46秒前
科研八戒完成签到 ,获得积分10
46秒前
dypdyp完成签到 ,获得积分10
46秒前
pwang_ecust完成签到,获得积分10
47秒前
三颗石头完成签到,获得积分10
48秒前
云不暇完成签到 ,获得积分10
48秒前
Yanki完成签到,获得积分10
49秒前
随遇而安应助hwezhu采纳,获得10
49秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146931
求助须知:如何正确求助?哪些是违规求助? 2798176
关于积分的说明 7826946
捐赠科研通 2454756
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565