已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing the Cell Painting assay for image-based profiling

仿形(计算机编程) 计算生物学 计算机科学 生物 人工智能 操作系统
作者
Beth A. Cimini,Srinivas Niranj Chandrasekaran,Maria Kost‐Alimova,Lisa Miller,Amy Goodale,Briana Fritchman,Patrick J. Byrne,Sakshi Garg,Nasim Jamali,David J. Logan,John Concannon,Charles-Hugues Lardeau,Elizabeth Mouchet,Shantanu Singh,Hamdah Shafqat Abbasi,Peter Aspesi,Justin D. Boyd,Tamara J. Gilbert,David Gnutt,Santosh Hariharan
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:18 (7): 1981-2013 被引量:81
标识
DOI:10.1038/s41596-023-00840-9
摘要

In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications have been proven, including clustering chemical and genetic perturbations on the basis of their similar morphological impact, identifying disease phenotypes by observing differences in profiles between healthy and diseased cells and predicting assay outcomes by using machine learning, among many others. Here, we provide an updated protocol for the most popular assay for image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, Golgi apparatus, plasma membrane, endoplasmic reticulum and mitochondria. The original protocol was updated in 2016 on the basis of several years’ experience running it at two sites, after optimizing it by visual stain quality. Here, we describe the work of the Joint Undertaking for Morphological Profiling Cell Painting Consortium, to improve upon the assay via quantitative optimization by measuring the assay’s ability to detect morphological phenotypes and group similar perturbations together. The assay gives very robust outputs despite various changes to the protocol, and two vendors’ dyes work equivalently well. We present Cell Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell culture and image acquisition take 1–2 weeks for typically sized batches of ≤20 plates; feature extraction and data analysis take an additional 1–2 weeks. This protocol is an update to Nat. Protoc. 11, 1757–1774 (2016): https://doi.org/10.1038/nprot.2016.105 We provide an updated protocol for image-based profiling with Cell Painting. A detailed procedure, with standardized conditions for the assay, is presented, along with a comprehensive description of parameters to be considered when optimizing the assay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gett发布了新的文献求助50
2秒前
小宋完成签到,获得积分10
3秒前
3秒前
3秒前
华仔应助哎呀小艾哈采纳,获得10
4秒前
CodeCraft应助如意厉采纳,获得10
4秒前
xms发布了新的文献求助20
6秒前
昆仑发布了新的文献求助10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
聪慧雪糕发布了新的文献求助30
8秒前
痴情的博超给痴情的博超的求助进行了留言
10秒前
chenxin7271发布了新的文献求助10
10秒前
12秒前
薛继敏完成签到,获得积分10
13秒前
单纯玫瑰完成签到,获得积分10
14秒前
科研通AI5应助chenxin7271采纳,获得10
14秒前
昆仑完成签到,获得积分10
14秒前
15秒前
17秒前
姀姀完成签到,获得积分10
18秒前
19秒前
xiepeijuan应助薛继敏采纳,获得10
21秒前
22秒前
LSQ完成签到,获得积分10
22秒前
22秒前
神外王001完成签到 ,获得积分10
23秒前
小海狸发布了新的文献求助20
24秒前
24秒前
LSQ发布了新的文献求助10
26秒前
27秒前
成太发布了新的文献求助10
29秒前
烟花应助典雅的曼冬采纳,获得10
30秒前
31秒前
32秒前
霸气人龙发布了新的文献求助10
33秒前
SSD完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757782
求助须知:如何正确求助?哪些是违规求助? 3300914
关于积分的说明 10115563
捐赠科研通 3015389
什么是DOI,文献DOI怎么找? 1656007
邀请新用户注册赠送积分活动 790209
科研通“疑难数据库(出版商)”最低求助积分说明 753638