亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Conquering the Cobb Angle: A Deep Learning Algorithm for Automated, Hardware-Invariant Measurement of Cobb Angle on Radiographs in Patients with Scoliosis

柯布角 医学 脊柱侧凸 射线照相术 科布 组内相关 算法 人工智能 基本事实 卷积神经网络 口腔正畸科 放射科 核医学 外科 计算机科学 临床心理学 生物 遗传学 心理测量学
作者
Abhinav Suri,Sisi Tang,Daniel Kargilis,Elena Taratuta,Bruce Kneeland,Grace Choi,Alisha Agarwal,Nancy Anabaraonye,Winnie Xu,James Parente,Ashley Terry,Anita Kalluri,Kevin Song,Chamith S. Rajapakse
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (4)
标识
DOI:10.1148/ryai.220158
摘要

Scoliosis is a disease estimated to affect more than 8% of adults in the United States. It is diagnosed with use of radiography by means of manual measurement of the angle between maximally tilted vertebrae on a radiograph (ie, the Cobb angle). However, these measurements are time-consuming, limiting their use in scoliosis surgical planning and postoperative monitoring. In this retrospective study, a pipeline (using the SpineTK architecture) was developed that was trained, validated, and tested on 1310 anterior-posterior images obtained with a low-dose stereoradiographic scanning system and radiographs obtained in patients with suspected scoliosis to automatically measure Cobb angles. The images were obtained at six centers (2005–2020). The algorithm measured Cobb angles on hold-out internal (n = 460) and external (n = 161) test sets with less than 2° error (intraclass correlation coefficient, 0.96) compared with ground truth measurements by two experienced radiologists. Measurements, produced in less than 0.5 second, did not differ significantly (P = .05 cutoff) from ground truth measurements, regardless of the presence or absence of surgical hardware (P = .80), age (P = .58), sex (P = .83), body mass index (P = .63), scoliosis severity (P = .44), or image type (low-dose stereoradiographic image vs radiograph; P = .51) in the patient. These findings suggest that the algorithm is highly robust across different clinical characteristics. Given its automated, rapid, and accurate measurements, this network may be used for monitoring scoliosis progression in patients. Keywords: Cobb Angle, Convolutional Neural Network, Deep Learning Algorithms, Pediatrics, Machine Learning Algorithms, Scoliosis, Spine Supplemental material is available for this article. © RSNA, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
13秒前
茶烟梧月完成签到,获得积分10
14秒前
茶烟梧月发布了新的文献求助30
18秒前
斯文的难破完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助50
24秒前
25秒前
hh完成签到,获得积分20
25秒前
30秒前
mickaqi完成签到 ,获得积分10
35秒前
38秒前
汉堡包应助hh采纳,获得10
56秒前
haralee完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
辣椒油发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
辣椒油完成签到,获得积分20
1分钟前
1分钟前
2分钟前
2分钟前
拼搏诗翠完成签到 ,获得积分10
2分钟前
2分钟前
袅袅完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
qq完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
ll完成签到,获得积分20
4分钟前
小狗发布了新的文献求助10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238299
什么是DOI,文献DOI怎么找? 1789690
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069