Conquering the Cobb Angle: A Deep Learning Algorithm for Automated, Hardware-Invariant Measurement of Cobb Angle on Radiographs in Patients with Scoliosis

柯布角 医学 脊柱侧凸 射线照相术 科布 组内相关 算法 人工智能 基本事实 卷积神经网络 口腔正畸科 放射科 核医学 外科 计算机科学 临床心理学 生物 遗传学 心理测量学
作者
Abhinav Suri,Sisi Tang,Daniel Kargilis,Elena Taratuta,Bruce Kneeland,Grace Choi,Alisha Agarwal,Nancy Anabaraonye,Winnie Xu,James Parente,Ashley Terry,Anita Kalluri,Kevin Song,Chamith S. Rajapakse
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (4)
标识
DOI:10.1148/ryai.220158
摘要

Scoliosis is a disease estimated to affect more than 8% of adults in the United States. It is diagnosed with use of radiography by means of manual measurement of the angle between maximally tilted vertebrae on a radiograph (ie, the Cobb angle). However, these measurements are time-consuming, limiting their use in scoliosis surgical planning and postoperative monitoring. In this retrospective study, a pipeline (using the SpineTK architecture) was developed that was trained, validated, and tested on 1310 anterior-posterior images obtained with a low-dose stereoradiographic scanning system and radiographs obtained in patients with suspected scoliosis to automatically measure Cobb angles. The images were obtained at six centers (2005–2020). The algorithm measured Cobb angles on hold-out internal (n = 460) and external (n = 161) test sets with less than 2° error (intraclass correlation coefficient, 0.96) compared with ground truth measurements by two experienced radiologists. Measurements, produced in less than 0.5 second, did not differ significantly (P = .05 cutoff) from ground truth measurements, regardless of the presence or absence of surgical hardware (P = .80), age (P = .58), sex (P = .83), body mass index (P = .63), scoliosis severity (P = .44), or image type (low-dose stereoradiographic image vs radiograph; P = .51) in the patient. These findings suggest that the algorithm is highly robust across different clinical characteristics. Given its automated, rapid, and accurate measurements, this network may be used for monitoring scoliosis progression in patients. Keywords: Cobb Angle, Convolutional Neural Network, Deep Learning Algorithms, Pediatrics, Machine Learning Algorithms, Scoliosis, Spine Supplemental material is available for this article. © RSNA, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零度完成签到,获得积分10
1秒前
小蘑菇应助鲁雨兰采纳,获得10
3秒前
yayyaya完成签到 ,获得积分10
5秒前
科研通AI2S应助清新的宛筠采纳,获得10
11秒前
鲁雨兰完成签到,获得积分20
12秒前
大雁完成签到 ,获得积分10
14秒前
LMC完成签到,获得积分10
15秒前
单薄天亦完成签到,获得积分10
16秒前
可爱的函函应助wnwn采纳,获得10
17秒前
17秒前
19秒前
爱学习的岁岁关注了科研通微信公众号
23秒前
24秒前
gao应助科研通管家采纳,获得10
24秒前
模糊中正应助科研通管家采纳,获得30
24秒前
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
24秒前
模糊中正应助科研通管家采纳,获得30
25秒前
大模型应助科研通管家采纳,获得10
25秒前
科研通AI2S应助顾阿秀采纳,获得10
26秒前
维生素完成签到 ,获得积分10
26秒前
krislang完成签到,获得积分10
27秒前
花生完成签到 ,获得积分10
28秒前
美丽无血完成签到,获得积分10
30秒前
含糊的代丝应助Andy采纳,获得10
31秒前
泪流不止发布了新的文献求助20
31秒前
BA1完成签到,获得积分10
31秒前
Mango完成签到 ,获得积分10
33秒前
大个应助友人A采纳,获得10
35秒前
柚子完成签到,获得积分10
35秒前
36秒前
田様应助Somogyis采纳,获得10
39秒前
SAL发布了新的文献求助10
41秒前
晴空完成签到,获得积分10
42秒前
含糊的代丝应助zc采纳,获得10
42秒前
42秒前
Jim发布了新的文献求助10
47秒前
友人A完成签到,获得积分20
50秒前
CHH完成签到 ,获得积分10
51秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267535
求助须知:如何正确求助?哪些是违规求助? 2906979
关于积分的说明 8340317
捐赠科研通 2577592
什么是DOI,文献DOI怎么找? 1401153
科研通“疑难数据库(出版商)”最低求助积分说明 655000
邀请新用户注册赠送积分活动 633967